Web Application

Development
with PHP 4.0

Riders

Other Books by New Riders Publishing

MySQL
Paul DuBois, 0-7357-0921-1

A UML Pattern Language
Paul Evitts, 1-57870-118-X

Constructing Superior Software
Paul Clements, 1-57870-147-3

Python Essential Reference
David Beazley, 0-7357-0901-7

KDE Application Development
Uwe Thiem, 1-57870-201-1

Developing Linux Applications with
GTK+ and GDK
Eric Harlow, 0-7357-0021-4

GTK+/Gnome Application
Development
Havoc Pennington, 0-7357-0078-8

DCE/RPC over SMB: Samba and
Windows NT Domain Internals
Luke Leighton, 1-57870-150-3

Linux Firewalls

Robert Ziegler, 0-7357-0900-9

Linux Essential Reference
Ed Petron, 0-7357-0852-5

Linux System Administration
Jim Dennis, M. Carling, et al,
1-556205-934-3

Web Application

Development
with PHP 4.0

Tobias Ratschiller

Till Gerken

With confributions by

New Zend Technologies, LTD
H'd 201 West 103rd Street, Zeev Suraski
I ers Indianapolis, Indiana 46290 Andi Gutmans

Web Application
Development with PHP 4.0

By: Tobias Ratschiller and Till Gerken
Copyright © 2000 by New Riders Publishing

FIRST EDITION: July, 2000

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written
permission from the publisher, except for the inclusion of

brief quotations in a review.

International Standard Book Number: 0-7357-0997-1
Library of Congress Catalog Card Number: 00-100402
0403020100 7654321

Interpretation of the printing code: The rightmost double-
digit number is the year of the book’s printing; the right-
most single-digit number is the number of the book’s
printing. For example, the printing code 00-1 shows that the
first printing of the book occurred in 2000.

Composed in Bembo and MCPdigital by New Riders Publishing
Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capital-
ized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service
mark. Windows and Microsoft are registered trademarks of

Microsoft Corporation.

Warning and Disclaimer

This book is designed to provide information about PHP.
Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is
implied.

The information is provided on an as-is basis. The authors
and New Riders Publishing shall have neither liability nor
responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this
book or from the use of the discs or programs that may

accompany it.

Publisher
David Dwyer

Executive Editor
Al Valvano

Managing Editor
Gina Brown

Product Marketing
Manager
Stephanie Layton

Publicity Manager
Susan Petro

Acquisitions Editors

Ann Quinn

Alan Bower

Stacey Beheler
Nancy Maragioglio

Editor
Robin Drake

Indexer
Cheryl Lenser

Manufacturing
Coordinator
Chris Moos

Book Designer
Louisa Klucznik

Cover Designer
Aren Howell

Composition
Amy Parker

Proofreader
Jessica McCarty

Contents

Foreword xiii

Introduction xv

Target Audience xvi
Prerequisites xvii
Organization of This Book xvii

Conventions Used in This Book xviii
I Advanced PHP 1

1 Development Concepts 3
PHP for Me? 3
The Importance of Planning 4
Coding Conventions 6
Using Files to Group Functions 24
‘Writing Documentation 25
An API Design Example 26

Summary 30

2 Advanced Syntax 31
PHP Syntax 31
Defining Constants 32
Array Functions 33
PHP and OOP 41
Linked Lists 53
Associative Arrays 63
Polymorphism and Self-Modifying Code 78

Summary 87

3 Application Design:
A Real-Life Example 89
Project Overview 90
Comparing Technologies 91
IR C Network Basics 95

Vi Contents

Fitting the Application into the Network 97
Interfacing the Network 99

Administration and Security 117
Implementation 119

Summary 119

II Web Applications 121

4 Web Application Concepts 123
HTTP and Sessions 123
Security Considerations 140
‘Why Usability Matters 158
Summary 166
References 166

5 Basic Web Application Strategies 167
The PHP Normal Form 168
Project Layout 175
CVS: Concurrent Versions System 178
Three-Tier Applications 191
Summary 198

6 Database Access with PHP 199
PHPLib: The PHP Base Library 200
Database Abstraction 202
Authentication 213
Summary 224

7 Cutting-Edge Applications 225
Knowledge Repositories 226
PHP and XML 238
Interchanging Data with WDDX 270
Summary 276

8

III

Contents

Case Studies 277
BizChek.com 277
SixCMS 281
MarketPlayer.com 285
Summary 290
References 290

Beyond PHP 291

Extending PHP 4.0: Hacking the Core of PHP 293
Overview 294

What Is Zend? and What Is PHP? 294

Extension Possibilities 295

Source Layout 297

PHP’s Automatic Build System 301

Creating Extensions 303

Compiling Modules 304

Using Extensions 306

Troubleshooting 308

Source Discussion 308

Accepting Arguments 317

Creating Variables 329

Objects 338

Resources 339

Macros for Automatic Global Variable Creation 340
Duplicating Variable Contents: The Copy Constructor 342
Returning Values 343

Printing Information 345

Startup and Shutdown Functions 348

Calling User Functions 349

Where to Go from Here 353

Reference: Some Configuration Macros 354

vii

About the Authors

Tobias Ratschiller is a new media consultant based in Italy. With extensive
knowledge of software development, database design, and content-management sys-
tems, he specializes in the creation of large-scale, dynamic Web sites. He has provided
consulting and implementation services for some of the world’s largest Web sites and
has contributed to several books and articles on PHP. He teaches at seminars through-
out Europe and is a frequent speaker at leading conferences.

Till Gerken is a freelance developer and consultant for various companies, focusing
on the creation of Web applications for Internet-based services. His background ranges
from using C/C++, Pascal, and x86 Assembler to create such high-performance
multimedia systems as 3D engines and real-time sound mixers, to using PHP and its
associated tools to create medium- to large-scale, dynamic Web sites.

viii

About the Technical Reviewer

Graeme Merrall contributed his considerable hands-on expertise to the entire
development process for Web Application Development with PHP 4.0.As the book was
being written, he reviewed all the material for technical content, organization, and
flow. His feedback was critical to ensuring that Web Application Development with PHP
4.0 fits our readers’ need for the highest quality technical information.

Graeme originally graduated in 1993 with a degree in biochemistry. During his
university studies, he discovered the Internet while it was still very much in its
infancy. This led him away from biochemistry into employment with an ISP and later
with a leading Web design firm in New Zealand, where he developed his skills in
PHP and ASP.

As well as programming, Graeme has written for the local newspaper in his former
home town in New Zealand and has produced several tutorials and articles on PHP
for Wired Digital’s Web Monkey.

Born and raised in New Zealand, Graeme currently resides in Sydney, where he
runs his own consultancy, specializing in e-commerce and business integration with
the Internet. In his spare time, he enjoys modern literature, music, and crocodile
wrestling.

About Zend Technologies, LTD.

The Zend Engine is the basic scripting engine that drives PHP. Owned by Zend
Technologies, LTD, the engine is licensed to PHP for free use under the Q Public
license. The Zend engine brings to PHP performance, reliability, and an easy-to-use
scripting interface.

The history of the Zend Engine began four years ago when the company
founders, Zeev Suraski and Andi Gutmans, joined the core development team of PHP
and wrote the scripting engine of PHP, which is installed on over a million hosts
today. Now, with the introduction of PHP 4.0, the Zend Engine has matured into a
versatile scripting engine, and Andi Gutmans and Zeev Suraski are engaged in devel-
oping a host of products for enhancing PHP’s performance and commercial value.

Acknowledgments

We'd like to say “thank you” to the staft at New Riders: You've probably had a hard
time with us, and we appreciate your friendliness and professional handling. Robin
Drake, our editor, deserves special thanks for her patience with us. Thanks as well to
our technical editor, Graeme Merrall, and acquisitions editor, Ann Quinn.

The following people have helped us during various stages of this book, and we’d
like to thank them as well: Alan Bower, Nancy Maragioglio, Jakob Nielsen, Kristian
Koehntopp, Zeev Suraski, Andi Gutmans, Leon Atkinson, Alexander Aulbach, Uwe
Steinmann, Boaz Yahav, and Rafi Ton. We’d also like to thank the authors of our case
studies. Finally, thanks to SoftQuad for providing their excellent XMetalL XML editor
for use in writing and editing the text.

Acknowledgments from Tobias

The person who deserves the most thanks is Till Gerken, of course, who was a great
coauthor. We've spent thousands (or so) of hours on IRC, reviewing chapters, writing
and fixing code—and having fun. It was hard work, but we had a great time.

Thanks to all folks on Efnet’s #php—theyre a great community, and it’s fun hang-
ing out there. If you have the chance, stop by and say hello to tigloo (Till) and Yapa
(that’s me). Everyone on IRC was helpful, and Zeev was especially patient in answer-
ing our questions.

Thanks to Robert Finazzer, who has provided valuable business advice over the last
few years, and has always been understanding when I've written articles or books
instead of working with him on multimillion-dollar ventures. Greetings to the rest of
the team at Profi Online Service, and of course Joachim Marangoni.

Acknowledgments from Till

I hardly thought that I would ever get to the point of writing this section, but now it’s
here. With it, I am finishing a project on which I spent a lot of time and energy dur-
ing the past year. I must admit that I sometimes thought that we wouldn’t make it, and
I'm proud now at seeing it on the shelf.

Because of this, the first person I have to mention is Tobias Ratschiller, who origi-
nally pulled me into the PHP business. From the very start he had an overwhelming
faith in me and showed endless patience while working with me. He was a five-star
coauthor and I'm glad I had the opportunity to write this book with him. Even when
I was sometimes unhappy with my material, he never had a lack of good suggestions.
As he already said, we spent endless hours on IRC, criticizing and fixing up each
other’s text and code, not to mention all the emails. It was definitely a lot of fun!

In addition to the acknowledgments above, I have to thank my friends, both those
who supported me in my work and those who didn’t. Even though I always hated it
when other authors said “too many to mention them all here,” I must admit that I feel
the same and that it would do more harm to leave someone out. After all, you know
who you are!

Last, but not least, I want to thank my family for putting up with me and my
workaholic attitude, and for providing a home for me when I had to find a quiet place.

Xi

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you're
willing to pass our way.

As the Executive Editor at New Riders Publishing, I welcome your comments. You
can fax, email, or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every message.
When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and share

them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: nrfeedback@newriders.com
Mail: Al Valvano

Executive Editor

New Riders Publishing

201 West 103" Street
Indianapolis, IN 46290 USA

Xii

Foreword by Zeev Suraski

‘When I first came across PHP about three years ago, I never imagined that one day I'd
be writing a foreword for a PHP book. As a matter of fact, back then, the possibility
that there would actually ever be any PHP books seemed a bit far-fetched. Looking
back at what made PHP grow to be one of the most widely used scripting languages
for Web development is no less than astonishing. My involvement in the PHP project
started, like many things, by accident. As an end user, I'd stumbled on a bug in
PHP/FI 2.0—something that was weird enough to get colleague Andi Gutmans and
me to look under the hood. When we saw the code that made PHP/FI 2.0 tick, we
weren’t too pleased with it. On the other hand, we really liked the idea of an
HTML-embedded, server-embedded server-side scripting language. So, like good
to-be software engineers, we decided it'd be cool to write it from scratch, but this
time, the “right way.”

Our rewrite of the language, and the huge amount of cooperative work that was
put into a wide variety of function modules and sample code, pushed PHP beyond
our wildest dreams and expectations. PHP is being used today on well over a million
domains on the Internet, and is the tool of choice for server-side scripting in
UNIX environments. PHP 4.0 is the next step in ensuring that PHP remains on the
cutting edge of Web scripting technologies for years to come. The Zend engine
(www. zend. com) revolutionizes the performance and scalability of PHP-based Web sites.
Its integrated session support; built-in XML, Java, and COM support; as well as a bun-
dle of additional features enable the Web developer to develop more powerful dynamic
sites, more easily than ever before.

With the continued development and integration of leading-edge technologies,
PHP stays up to date. The new Java and DCOM support, the advanced XML features,
and the improved OOP features further increase PHP’s acceptance in business envi-
ronments and make PHP a viable tool for enterprise computing. The commercial add-
ons from Zend Technologies—for example, the debugger, IDE, and compiler—will
lead to a further leap. Also, the insides of PHP 4.0 have gone through architectural
revolutions that will be largely unnoticed by the end user. For example, the Web server
interface has been completely abstracted, allowing the support of Web servers other
than Apache. Books like the one you're reading right now provide you with the nec-
essary background to utilize these new technologies successfully.

In my opinion, the future looks bright for Open Source in general and PHP in
particular. In 1997, you had to jump through hoops just to convince your manager
that Linux was at least as stable as Windows NT, and using Open Source in large
companies wasn’t even considered. The world has changed. Companies that took the
mission to back Linux-based solutions, such as RedHat, SuSE, and VA Linux, have not
only become commercial giants, but also positioned Linux and Open Source in
general as an acceptable solution in every company today. Luckily, these companies
were smart enough to do that while keeping the Open Source spirit and a strong

xiii

relationship with the community. The Open Source development model on one hand,
and the firm commercial backing on the other, brought Linux to unimaginable
heights. I'm sure that commercial companies that take the mission to back PHP, such
as Zend Technologies, will help in making PHP an even more widely used solution,
especially in the highest-end Web sites.

I would like to take this opportunity to thank Prof. Michael Rodeh of IBM Haifa
and the Technion Institute of Technology, who encouraged Andi and me to cooperate
with Rasmus Lerdorf, the author of PHP/FI 1.0 and 2.0; Rasmus Lerdorf, who was
very happy to cooperate with us to make PHP 3.0 the official PHP/FI 2.0 successor;
The PHP Group and the entire team of PHP developers, without which PHP
wouldn’t have been the excellent tool it is today; and finally, the PHP community,
which has proven to be an endless resource for ideas and support.

I’'m sure you’ll find this book helpful when learning about advanced PHP and the
development of Web applications. This is one of the few books covering more than
the mere syntax of a language—it introduces you to the concepts behind the language,
and can help you to enhance your problem-solving skills in Web programming.

Good luck!

Zeev Suraski

Xiv

Introduction

The ancient Masters
didn’t try to educate the people,
but kindly taught them to not-know.

While the success of Open Source software like Linux or Apache has been docu-
mented extensively throughout all mainstream media, the rise of PHP has gone largely
unnoticed. Still, the Web scripting language PHP is the most popular module for the
Apache Web server, according to an E-Soft survey (www.e-softinc.com/survey/).
Netcraft studies have found that PHP is in use on over 6% of all Web domains in the
world (see www.netcraft.com/survey). That’s an incredible market penetration for a
rather specialized product. This popularity continues to rise exponentially. Increasingly,
this is being reflected in traditional media: As of May, 2000, more than 20 books about
PHP have been published in different languages, with more in the pipeline.

Commercial players are beginning to join the bandwagon: PHP is included with
Web servers, for example C2’s Stronghold, and Linux distributions. A new company,
Zend Technologies, has been formed to provide commercial add-ons and support for
PHP. A long list of large-scale Web sites employ PHP, as well as hundreds of thousands
of small to medium Web sites.

For the authors, this book began in June of 1999, when we were approached by
New Riders Publishing to write a book about advanced PHP. The idea of writing a
PHP book had been in our heads since some time prior, and the New Riders pro-
posal was very welcome.

About 1,500 emails, 500 CVS commits, and countless hours on IR C later, we’re
finally done. It was a bear of a job, but we think we succeeded in writing a book that’s
different from pure reference manuals. We have tried to explain the concepts of Web
application development, rather than giving you just a dry overview of PHP’s features.

The evolution from a novice programmer with no or little formal education to a
software development expert happens in different stages. The programmer begins the
career as an apprentice. At this time, the programmer usually doesn’t worry about
coding styles, planning, or testing—unreadable code, missing security, and long hacker
nights are typical for this stage. While the programmer may know all the tricks and

hidden features of a language, he or she will encounter difficulties in team develop-
ment, maintenance, and larger development projects. At this point, you can easily spot
those who will be expert developers later. They start to ask questions:

= How can I avoid implementing the same functionality over and over?

= What provisions do I have to put into effect to make my application secure and
stable?

= What does it take to make my application easier to maintain?

= How can multiple people work together efficiently on a team?

XV

XVi

Introduction

This is where our book comes into play. We hope to provide software developers with
some guidelines on better PHP and Web application software development. Many
technologies are available today, and you can only fully utilize them if you understand
the fundamental principles behind the development process, and if you develop
problem-solving skills. Typical reference manuals don’t help with those issues.

Target Audience

If you’re new to programming, this book is not for you.You’ll find a helpful resource,
however, in the following cases:

= You have already developed applications with PHP, and want to take your skills
to the next level.

= You have experience with other programming languages and want to develop
‘Web applications with PHP.

= You're an expert with PHP and want to extend PHP’ feature set on your own.

You don’t need to be a PHP wizard to read this book, but you should be familiar
with PHP’ syntax, or have good knowledge of programming principles.

Prerequisites

This book assumes that you have a working PHP setup, preferably PHP 4.0 or later.
Because of its popularity, we use MySQL as the database system where one is
required. Because platform independence is one of PHP’s strongest features, however,
our examples should run on UNIX as well as on Windows.

Organization of This Book

This book is divided into three parts. The first part, “Advanced PHP,” covers the
advanced syntax of PHP; for example, object orientation, dynamic functions and
variables, and self-modifying code. It also gives you an overview of project planning
principles, coding styles, and application design. This part provides the necessary base
for fast, productive development of industry-quality Web applications.

Part II, “Web Applications,” focuses on building the software: It explains why
sessions are important, what security guidelines you need to keep in mind, why
usability matters, and how to use the PHPLib for session management and database
access. You’ll also find three case studies of successful PHP projects here, to help you
convince your I'T managers.

The third part of the book, “Beyond PHP,” is for readers who want to go beyond
what’s currently available with PHP, and explains how to extend PHP with C.This is
the official documentation on extending PHP, as approved by Zend Technologies.

In detail, the following topics are covered.

Introduction

Chapter 1—Development Concepts

Having to deal with advanced projects makes the usage of coding conventions, proper
planning, and advanced syntax unavoidable requirements. This chapter covers general
coding conventions that are a requirement for all industry-quality projects—naming
and comment conventions, as well as how to break up the source into logical modules.

Chapter 2—Advanced Syntax

This chapter covers PHP’ advanced syntax, for example multidimensional arrays,
classes, variable variables, self~-modifying code, and the like.

Chapter 3—Application Design: A Real-Life Example

In this chapter, we walk you through the entire process of planning a complete Web
application: phpChat, a Web-based chat client interface to IRC. This chapter shows
planning fundamentals, gives guidelines on project organization, and shows how to
realize modular, plug-in-enabled applications.

Chapter 4—Web Application Concepts

Session management, security considerations and authentication, and usability form the
base of every Web application. Web applications aren’t possible without proper session
management. You have to find a way to recognize users during multiple page requests
if you want to associate variables like a shopping cart with one specific user. And this
identification had better be secure if you don’t want to have one user seeing another’s
credit card information. Indeed, special considerations are necessary for improving
security in your applications. Even if PHP is less prone to crackers’ attacks than other
CGI environments, it’s easy to write totally exposed applications when you don’t keep
in mind certain important principles covered in this chapter.

This chapter also introduces basic usability concepts. As soon as we begin to talk
about applications instead of stand-alone scripts, the user’s role becomes more impor-
tant. After all, it’s users who finally determine the success or failure of a project—and
this chapter shows some guidelines to achieve better user satisfaction.

Chapter 5—Basic Web Application Strategies

This chapter discusses more fundamentals of Web applications. All Web applications
process form input, for example, or deal with separation of layout and code. Moving
on from these topics, this chapter also introduces you to effective team development
by giving an overview of version control with CVS. Finally, it discusses multi-tier
applications, COM, and Java from a PHP point of view.

XVii

xviii

Introduction

Chapter 6—Database Access with PHP

Without databases, Web applications are not possible. Chapter 6 presents the PHPLib
as a tool for vendor-independent database access, and gives an overview about its
other features, such as session management, user authentication, and permission
management.

Chapter 7—Cutting-Edge Applications

By developing a complete knowledge repository using PHPLIb, this chapter familiar-
izes you with PHPLib’s template class, self-references in SQL, and other advanced
topics. Then the chapter presents an overview of XML and how applications can
benefit from this exciting technology. The chapter also describes PHP’ interfaces for
XML parsing and its WDDX functions.

Chapter 8—Case Studies

Success stories can help tremendously when introducing a new technology into a cor-
porate environment. In Chapter 8, we present case studies featuring Six Open Systems,
BizChek, and Marketplayer.com—three great examples among hundreds of companies
using PHP successfully in high-demand scenarios.

Chapter 9—Extending PHP 4.0: Hacking the Core of PHP

Are more than 1,200 functions still not enough for you? No problem, because this
chapter 1s the official documentation on extending PHP. If you know some C,
Chapter 9 gives you some condensed insight into the internals of PHP 4.0, and shows
you how to write your own modules to extend PHP’s functionality.

Conventions Used in this Book

The following conventions are used in this book:

Convention Usage
italic New terms being defined.
monospace text Commands, syntax lines, and so on, as well as Internet

addresses such as www.phpwizard.net.

- Code-continuation characters are inserted into code when
a line shouldn’t be broken, but we simply ran out of room
on the page.

I

Advanced PHP

1 Development Concepts
2 Advanced Syntax
3 Application Design: A Real-Life Example

Development Concepts

Naming is the origin of all particular things.

I O TRULY MASTER A LANGUAGE, IT’S CRUCIAL TO understand not just the syntax and
semantics of the language, but its philosophy, background, and design characteristics.

PHP for Me?

Have you ever asked yourself why there are so many programming languages? Apart
from such “mainstream” languages as C, C++, Pascal, and the like, there are others
such as Logo, Cobol, Fortran, Simula, and many more exotic languages. Most software
developers don't really think about alternative programming languages when outlining
a project; they have their preferred language (maybe a corporate-dictated language),
know its advantages as well as its drawbacks, and adapt the project according to the
language’s specific strengths and weaknesses. But this might impose unnecessary addi-
tional workload to level out flaws in the chosen language.

Knowing how to use a language but lacking the knowledge of its specific concepts
is like a truck driver wanting to participate in a cart race. Of course, he knows generally
how to drive the cart—he might even place well at the finish line—but he’ll never be
an outstanding driver until he’s familiar with the specialties of his new vehicle.

4

Chapter 1 Development Concepts

Similarly, when asked to write an application, the OOP programmer will try to fit
it into objects, and the procedural programmer will handle the same task differently.
‘Which approach is better? Each programmer will say that his or her method is
best, but only someone who’s familiar with both concepts—OOP and procedural
programming—will be able to judge.

Each language mentioned earlier represents a different approach of solving prob-
lems in a specific way—mostly only problems of a specific kind, with special require-
ments. Because these languages focus on a very limited field of use, their success is
limited to these fields as well. Languages like C and Pascal probably became so popular
because of their broad focus, leaving out special features for specific problems but satis-
fying the need for a tool that solves common problems.

How does PHP fit into this scheme? Although it’s called a language, PHP isn’t
really a language of its own, but instead is a mixture of different languages. It mainly
uses the syntax most programmers know from C, but still is substantially different; it’s
interpreted. PHP also knows different variable types, but does no strict type checking.
PHP knows classes but no structured types. There are a lot of examples like this, but
you probably get the point already: PHP melts a lot of different conceptual approaches
into a completely new, unique approach.

To be successtul in creating Web applications using PHP, we encourage you to
answer the following question first: Is PHP the ideal language for my project? Good
question. But we would be dumb to say no. (Who would be writing a book about
something they think is bad?) Let’s rephrase the question: Is there a better language
than PHP for my project? This is safe to answer. If youre doing Web application
development, PHP is the language for you.

The Importance of Planning

Why You Should Read This Section

Even if you're already a professional programmer familiar with PHP, we encourage you to read the fol-
lowing sections, as they cover the basics for successful development. If you're already familiar with the
discussed topics, take the time to browse through the text anyway; you might discover new information—
new views of problems, new approaches, new solutions. The more you know about approaching different
aspects of your future projects, the better you'll be at nailing down the critical fragments and handling
them in a superior way. Many of the following sections also discuss topics that are more questions of
belief than commonly accepted rules. We'd like you to trust us as professional developers and rely on our
experience before abandoning the content—it will pay later on.

The Importance of Planning

Before diving into PHP-specific issues, let’s start from a wider point of view. Some
issues apply to application development in general, regardless of which language you're
using and on what platform you’re developing.

When working on a professional project, it’s very important that you think about
what you’re doing. Know your enemy—never underestimate him. Although your project
isn’t really an enemy, the point still applies. Know all your project’s specifications, its
target platform(s), its users, and never underestimate the significance of small problems
that you haven’t evaluated completely before moving on to other topics.

Judging from our experience, planning takes at least 50% of the development time;
the bigger the project, the more thoroughly you should develop its outlines. This prin-
ciple applies to contacting your customers and working closely with them on defining
an overall project outline, as well as talking with your developers about defining a
coding outline. The less effort you spend on consistency and maintainability, the
sooner you’ll run into problems when reopening old files and trying to fix bugs or
add new features.

Planning time isn’t necessarily proportional to a project’s size. As an example, think
about a search algorithm that you have to design. The application doesn’t have to do
more than basically crawl through a heap of information, extracting data according to
a set of rules. Let’s say that the data is already there, so setup and output won'’t require
a lot of effort. The application will spend most of its execution time in its main
searching loop. The loop probably won't even take more than 100 lines of code, but
choosing or designing an optimal algorithm for an optimal loop could easily take a
whole day. This little loop might be the most substantial part in your design phase,
while on the other hand you may create projects with a few thousand lines that have
been thoroughly planned in less than a day.

Similarly, let’s say you need a little script that lists all files in a directory. You could
hack it quickly so it would perform just this specific task, listing all files in a specified
directory. You wouldn’t have to worry about it anymore—the problem’s solved and
you can move on to other tasks, leaving your snippet behind. But another strategy
might be to take into consideration that at a later point—maybe even in a completely
different project—you’ll probably need a similar tool again. Just hacking directory
listers over and over when you need one, each for its specific task, would be a waste
of time. Thus, when first encountering such a situation, you should think about it. You
could create a separate module from the directory lister, allowing it to list different
directories, optionally recursing subdirectories, eventually even accepting wildcards.
You might create a bulletproof little function that would handle most special cases
and also handle everyday demands to a directory lister just perfectly. With this latter
method, after a few projects you would have a library of solid tool functions that you
could reuse safely and rely on, and that sometimes might strip down development
time significantly.

6

Chapter 1 Development Concepts

Of course, an ever-increasing number of freely available tool function libraries exist,
but these will hardly satisfy all your needs, nor will they be optimized for your special
demands. Some libraries are also just too heavy to carry around—having to parse a
few hundred kilobytes of extra code every hit might significantly decrease the perfor-
mance of your site. In this situation, it pays to be able to replace a sub-optimal solution
with a 100% optimal solution that you created.

Larger projects offer even more opportunities for problems due to lack of planning.
Late in development, you might encounter difficulties that you didn’t or couldn’t fore-
see because of the lack of work and time spent on the design. These difficulties might
be so severe that they require you to completely restructure the entire project. Imagine
a database-backed application that relies on an additional database abstraction layer.
The database abstraction layer accepts only textual data, but at a later point you notice
that you also need it to accept numeric data. You might enable it to accept numeric
data by workaround conversions, but at a later point discover that the workarounds
don’t satisty your needs. The only thing you can do at this point is change the database
interface, which requires a rework of the abstraction layer as well as a check of all
calls to it in the main code—and of course the removal of the previously created
workarounds.

Hours or days of work spent on something that could have been avoided from the
very beginning—problems that often decide between success or failure, because time is
the most valuable resource that you will never have enough of.

The following sections guide you through most of the very basic, yet very impor-
tant practical issues of development: improving your code quality as well as basic
design and documentation issues. After covering these, we create an application pro-
gramming interface (API), taking the naive, practical approach to familiarize you with
the new concepts, followed directly by an API creation from scratch, developing it the-
oretically “on paper” and then nailing down a few practical principles to help you
implement your next API—matters of style, do’s and don’ts, as well as a few tricks of
the trade.

Coding Conventions

‘What's the difference between good code and bad code? Actually, it’s very simple.
Good code—really good code—can be read almost like a book. You can start any-
where and at once you know what the lines you're reading are used for, under which
circumstances they’re executed, and any setup they might require. Even if you lack
background knowledge and encounter a sophisticated and complicated algorithm,
you’ll at least be able to see quickly which tasks it performs, and under which aspects
it performs them.

It would be easy to simply show examples and say, “Do as they did,” but we’d like
this chapter to impart a solid basis for writing professional code—a basis that makes
the difference between truly well-crafted code and an everyday hack. Unfortunately,

Coding Conventions

space restrictions prevent us from discussing all aspects of good code-writing style as
elaborately as we’d like, but this chapter will give you a good head start. We urge you
to acquire dedicated material, in order to familiarize yourself with every little bit of
software design and engineering. This broad field is almost a science of its own, on
which a lot of treatises exist—mostly very dry and theoretical, but unrenounceable in
practice. We've compressed the most important issues into the following sections, dis-
cussing the very elementary questions.

Choosing Names

Choosing variable names is probably the task that programmers do most often but
think about the least. With the number of different variable names that can appear in
larger projects, if you'd construct a listing of the name, type, and declaration point of
each you could create something very similar to a small phone directory. How would
you like your directory to look? Different naming schemes have evolved over time,
with different philosophies, each with its own advantages and disadvantages. The
schemes generally fall into two extremes: short and simple variable and function
names, versus “speaking’” variable and function names—longer names that tell about
the variable’s type and intention.

The “phone directory” might look like this:

Name Address Phone
J.D. 382 W.S. -3951
M.S. 204 E. R. -8382

Very informative. You know that it has two entries, but not much more.You know the
person’s initials, but not the full name.You know the house number, but not the exact
street name. You know only part of the phone number.

Let’s look at another example:

Name Address Phone
ht5ft9in_age32_John 386 West Street, Los +1-555-304-3951
Doe_male_married Angeles, California,

USA, Earth
ht5ft6in_age27_Mary 204 East Road, Los +1-555-306-8382
Smith_female_single Angeles, California,

USA, Earth

In this example, the individual’s name includes height, age, gender, and marital status;
the address tells you not only street and city but also state, country, and even planet;
and the phone number appends country and area codes.

8

Chapter 1 Development Concepts

Is the second solution better than the first? Neither is optimal. People teach both
approaches in programming lectures, but neither is really satisfying. Defining a type
tpIntMyIntegerCounter and then declaring a variable instMyIntegerCounterInstance
for a simple for loop seems too much when you only need to traverse an array and
set all elements to zero (see Listing 1.1).

Listing 1.1 An overdose of exactness.

for ($instMyIntegerCounterInstance = 0;
$instMyIntegerCounterInstance < MAXTPINTEGERCOUNTERRANGE;
$instMyIntegerCounterInstance+t+)

$instMyArrayInstance[$instMyCounterInstance] = 0;

On the other hand, working with indices called i, j, k (instead of long ones like
$instMyIntegerCounterInstance) is also unacceptable when doing complicated buffer
operations such as compression or the like.

This is just one example of the misuse of a common concept. What to do? The
solution is to choose a good overall concept and make exceptions at the right places.
When you’re writing an application, you know what’s going on in your code and can
quickly maneuver from one point to another—but other people may not find this so
easy. If you get a source file from someone else on your team and need to add a list of
features to it, you first have to get an overall impression and identify the code’s differ-
ent sections. Ideally, this process will take place parallel to reading the source. But
because this 1s impossible to do without hints and common patterns to help you
structure the source code for reading, it’s very important to pack as much additional
information into the source code as possible, while not obscuring the obvious facts. So how
can you perceive this information and integrate it into your own code?

= Make your code easy to read.

= Add comments wherever possible.

= Choose speaking variable names wherever appropriate.

= Keep clear and consistent function interfaces.

= Structure your code into logical function groups.

= Abstract separate chunks of code.

= Use files to group your functions not only logically but physically.

= Write documentation.

The following sections discuss each of these issues.

Coding Conventions

Making Your Code Easy to Read

To be able to understand text when reading, your brain must analyze the information
it receives from your eyes, identify the important parts, and then translate these parts
into correct order. Analysis is performed in two steps: physical analysis and logical
analysis. Physical analysis is performed first, by examining the visual structure of the
text; for example, paragraphs, rows, columns, and even spaces between words. This
process breaks up the perception of the text as a whole (for example, the sheet of
paper or the window on your desktop containing the text) into a tree-like structure of
smaller chunks. Assuming a top-down tree with the tree node at the top and leaves at
the bottom, the top of the tree contains the most generic information; for example,
the order of paragraphs that you have to read. At the bottom of the tree is something
like the order of words in a line, or even the order of characters in a word.

The logical analysis process takes this physical information, traverses the tree in order,
and tries to translate the information into a meaningful result. Whether this is a gram-
matical translation (what structure does the sentence have?) or a contextual translation
(what does the sentence mean?) doesn’t matter for this discussion; the important thing
is that the better the results of the physical analysis, the easier, faster, and better the
results of the logical analysis.

Logical analysis can compensate for missing information from physical analysis, but
only to a limited extent.

Asanexampletakethissentenceifyoucanreadityourlogicalanalyzerworksverywell.

You probably can read the preceding sentence, but it takes much longer and requires

much more concentration than the rest of the sentences in this book. Important infor-

mation is missing (the spaces) for the first step in analysis, and you’re not used to that.
‘We could make it easier by adding a bit of punctuation:

Asanexample, takethissentence--ifyoucanreadit, yourlogicalanalyzerworksverywell.

The punctuation is useful information for your physical analyzer. Notice that it’s much
easier to read this version, as well as to refocus at any point of your choice. On to the
next step:

As an example, take this sentence--if you can read it, your logical analyzer

works very well.
This is the regular way you read a sentence, your native way of perceiving text. But we
could delineate the structure of the sentence even more:

As an example,

take this sentence--
if you can read it,
your logical analyzer
works very well.

10

Chapter 1 Development Concepts

This is an extreme method for using physical means to aid you in understanding the
sentence as quickly as possible. Note that the separation in this case hinders the natural
reading flow because you're not used to seeing a sentence split up into syntactical
units—but for source code it’s an advantage. Because source code often contains com-
plicated constructs, formulas, and the like, it’s very important to support the reader by
giving the source a clear physical structure. This can be achieved by using indentation
and placing special keywords of your programming language at exposed positions.
Let’s take a look at a short PHP program:

<?function myfunc($myvar){$somevar=$myvar*2;return($somevar+i);}print myfunc(1);?>

The code itself is probably not an intellectual masterpiece, but let’s look only at its
structure. Without having read this snippet previously, would you be able to point
instantly to the start of the main code? Would you be able to mark the first and last
instruction of the function in it? Notice that even if you're fast at finding the desired
places, your eyes will inevitably start at the beginning of the line, passing through the
source from left to right, stopping where you assume the target will be. Unconsciously,
your brain rereads the whole line because it’s missing information from the physical
analysis. To compensate for the lack of information from the first step, your logical
analyzer will take over this step as well and will be stressed twice as much. Just as with
a computer, your brain has limited power, so the additional workload for the logical
analyzer takes the form of a lack of capacity when your brain actually tries to under-
stand and memorize the source code. But understanding and memorizing is exactly
what you want people to achieve when reading your source code, and what you want
to do when reading other people’s sources.

So, this was almost a scientific approach to explain why formatting source code is
useful. Is there another reason? Oh, yes: Well-formatted source code just looks good.

Following are a few guidelines for what we think is the optimal style to use in
formatting source code. Please note that these are not mandated, but are regarded as
common style. Many industrial and Open Source projects have been formatted this
way, and it often pays to write in this style.

= Put all block tags (<?, 2>, <?php, <%, %>, {, }, etc.) on separate lines.
= Indent all blocks with tabs (ideally, set the tab width to no less than 4).

= Leave spaces between keywords and key characters, especially when doing
calculations.

= Group logical chunks of code within a block by placing them on consecutive
lines, and leave a blank line between all others.

= Separate blocks from each other using a blank line.

= Separate function headers and eventual function footers from the rest of the code
using a blank line (importing globals is treated as a part of the function header).

= Integrate block comments into the code, using the same indentation as the code
block to which each refers.

= Put all line comments into the same column throughout a block.

Coding Conventions

As an example, Listing 1.2 shows the earlier code snippet, reformatted.

Listing 1.2 Reformatted code snippet.

<?

function myfunc($myvar)

{
$somevar = $myvar * 2;
return($somevar + 1);
}
print(myfunc(1));

7>

Notice that this piece of code has fewer difficulties to navigate.
The use of spaces in the snippet can be exaggerated even more by also separating
parentheses from keywords:

<?

function myfunc ($myvar)

{
$somevar = $myvar * 2;
return ($somevar + 1);

}
print (myfunc (1));
>

It may seem somewhat excessive here, but imagine this code embedded into a few
thousand other lines of code, and you might change your opinion. Some people say
that the spaces between parentheses are more disturbing and irritating than helpful in
structuring the text—we must confess that sometimes that’s true. The examples in this
book don’t always use this kind of formatting; we’re leaving the decision to you as to
whether to use this method. The most important thing is this: Be consistent. Once
you've decided to use a certain style, keep it at least throughout a project. If you're
modifying other people’s sources, follow their style as well as you can. Consistency is
one of the most important aspects in professional development.

Try reading all example sources attentively and then try to imitate their style, adapt-
ing your own style until you’ve reached something very close to the original. As soon
as you're feeling familiar with it, you’ll see that it wasn’t a worthless effort.

11

12 Chapter 1 Development Concepts

To motivate you before going further, two examples.

The code in Figure 1.1 is meant to create an SQL statement. Except for the last
line assigning a string containing "select *" to a variable named $query, we don’t
think that anything in Figure 1.1 indicates the code’s purpose. In the code in Figure
1.2, on the other hand, it’s easy to understand what’s going on.

@ UliraEdit-32 - [C:\temp\heavy.php3-] |=10]]

|) Fle Edit Seach Pioject View Fomat Column Macia Advanced Window Help I
EdESREIWHI B APy OGEHDS a2

heavy.php3* | phplRC pho3 |

if ((l%cselect) and (l$category) and (!3$gsearch) and (l3country)) { =
cho prénbsp<ulr<ulr<hl>Insufficient Input Datal!</hl> Pleazs =
provide more Information':

exitl)
if (empty({$csslect) && Scategory = 'JOBS WANTED')
$select .- ' and category 'JOBS WANTED' *
if (Scategory) { |
$select.-' and category='".$category.’ '’
} slssif ($csslect) {
$select.-' and ('.$cselect.')";
T
$filter="where (recruiters.active='yes') and (jobs.expiry > now())
and description <> ' $sslsct

} else {
sfilter = stripslashes{$filter)
Squery = 'selsct * , unix_timestamp(expiry) as nx_inserted from jobs left

join recruiters on jobs.recruiterID-recruiters.recruiterID $filter order by
inssrted desc':

. | of]

For Help, pre:/Ln 29, Col 1 [pas | [Modt 04.10.99 15:26:14 File Size: 779 E

Figure 1.1 Bad code.

(T3 UltraE dit-32 - [C:\phplRCA\phplRC_0.9bAphpIRC.php3]
L,lFIe Edit Seach Project View Fomal Column Macio Advanced Window Help =

g SR E WalHHEhﬂlnmlnl@un\ﬂhElIl%lﬂ\?

heavp.php3 phAIRCphed |

#7 open a socket
$irc_connection_handle - fsockopen($server_name, Sport_nr).

]

#/ return error if connection failed
1f(|5irc_connection_handle)
Teturn(l);

/7 ok, we have a connection — nov set up

#/ send USER comnand, we don't espect backtalk on that one
fputs(Sirc connection_handle, “USER Sirc identd Sirc host Sserver na

#7 nov send NICK command. we might get backtalk on this one
fputs($irc_connection_handle, "HICK Sirc nick n z')

/7 fake comnection status so that irc_get_nessage() works
Sirc_connected = 1:

/7 nov ses if we got an erronsous nick nessags.
/7 if yes. our nick is not correct

Sdone = 0:

while(! Sdone)

{

$neg - irc_get_nmessage(). -

4| | |
[For Help, pre:|Ln 547, Col. 1 Dos Mod: 02.09.93 21:47.00 File Size: E1817 INS |

Figure 1.2 Better code.

Coding Conventions

We believe that this is what code should look like, at least approximately. It shows a
clear structure, is well commented, and is easy to understand.

Adding Comments

‘We can’t stress it enough—even though while programming you may think it the
dumbest thing to do—commenting is substantial when producing high-quality code.
‘When solving complicated problems, seldom do two people think the same way. What
may be totally obvious to one is obscure to the other. Comments are very helpful in
these situations, and they should be added to your code wherever possible.

There are two main kinds of comments: header comments (such as comments in file
headers, module headers, or function headers) and inline comments. Header comments
should be used for purposes of introduction; to inform the reader about generic things
in a file; or about the next, larger piece of code. Inline comments should be used
within functions, embedded into the code, to explain what a certain line or block of
code is actually doing.

The following sections should give you an idea of the look of these comments
and the information that they should contain. These days, such comments are usually
produced by Rapid Application Development (RAD) tools or other authoring aids,
but since no similar systems are available for PHP at the time of this writing, the
comments should be handcrafted, in spite of the additional workload.

In the following sections, the comment types are discussed in order of abstraction,
from most abstract to most concrete.

Keeping Comments Up to Date

Remember to create comments before or while working on the module/function they describe; it's a very
annoying job to rework a file just to add this information afterward. Also, take great care when modify-
ing functions at a later point—always update your comments appropriately! For example, if you add or
remove global variables, update their usage indication in the comment header as well; the same goes for
changes in parameter ordering, parameter types, and so on.

Use Macros to Speed Up Your Commenting

In your favorite editor, create macros for each comment type and assign them to a hotkey (for example,
Ctrl+Alt+F1 for file headers, Ctrl+Alt+F2 for module headers, and so on). Include variables in these com-
ments if the editor supports this feature, so that creating an elaborate and informative comment
becomes just a matter of a short Q&tA dialogue.

13

14 Chapter 1 Development Concepts

File Header Comments

File header comments should look something like those in Listing 1.3.

Listing 1.3 File header comment.

LEELETELEEE T LTI

/1

/] phpIRC.php3 - IRC client module for PHP3 IRC clients

/1

LEPELTEELEC IR e i e e r i i i rrr g
/1l

// This module will handle all major interfacing with the IRC server, making

// all IRC commands easily available by a predefined API.

;; See phpIRC.inc.php3 for configuration options.

;; Author: Till Gerken Last modified: ©09/17/99

;; Copyright (c) 1999 by Till Gerken
;;///

You might prefer to use a bounding box created by multiline comments, which some
people tend to find more aesthetic (see Listing 1.4).

Listing 1.4 File header comment using multiline comments.

Kkkkhkkhhhhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhkkhhkhkhhhhhhhhkkhkkkhkkkhkkkhkk ok

* *
* phpIRC.php3 - IRC client module for PHP3 IRC clients *
* *

KRR ARk Ak Ak Ak A A Ak Ak kA kA kA kA kA h ok h ok k kA k ko h ok hk ok hkkkkkh ko hkhkkhkkkkkhkkhkhkhkkhkkkxk

* *
* This module will handle all major interfacing with the IRC server, making *
* all IRC commands easily available by a predefined API. *

* *
* See phpIRC.inc.php3 for configuration options. *

* *
* Author: Till Gerken Last modified: 09/17/99 *

* *
* Copyright (c) 1999 by Till Gerken *
* *

**/

Extracting Block Comments in UNIX
On UNIX systems, the following grep command extracts such block comments from the source:

grep '“[\\\/]**' source.php3

Coding Conventions

Which style you choose for formatting your headers isn’t crucial, but the information
you choose to include in the file header is important. As shown in this example, head-
ers should include such general information as details about the module, author, and
so on. Items should be placed in a meaningful order (for example, it makes no sense to
include a long description and then a short description—by the time you’ve read the
long description you don’t need the short one anymore). The following list shows sug-
gested information as well as order:

1. Module filename.

Short module description (one line).

Long module description.

Notes about usage, requirements, warnings, and so on.
Author’s name and contact information.

Creation and last modification date of the module.
Copyright notice.

License notice.

¥ ®» NN

Pointers to change log, home page, distribution file, and so on.

_\
e

Eventually, excerpts from the change log, if needed.

If this sounds like too much information, remember that it’s better to have redundant
information rather than a lack of information. Of course, not all fields are appropriate
under all circumstances; we didn’t include all the fields in the earlier example.
However, you should try to put as much data as you can into your headers—it’s good
style, and the worst that can happen is that some people just won’t read it. Others
might be grateful for it—maybe even you, since neglecting copyright and licensing
information in a commercial project can result in headaches later on, when other
programmers are recycling your code for free.

Module Header Comments

If you have more than one module in a file (for example, when a module only consists
of three functions to abstract functionality from a larger procedure of a bounding
module), you should place an informative header before the very first function.

A module header looks like Listing 1.5.

Listing 1.5 Module header comment.

THEETEEETLETL LT LT LT T
% Submodule for file access from main()
;;///
;; This submodule will provide functionality for easy file access,

continues

15

16

Chapter 1 Development Concepts

Listing 1.5 Continued

// and includes error checking and reporting.
I

// Functions:

I

/1l int file_open(string $file_name)

/1l bool file_close(int $file_handle)

/1l int file_read(int $file_handle, $nr_bytes)

/1

// Remarks:

/1l

/1l - provides no seek function
/1l - does not allow write access
/1l

LECEELEEEE TP

These headers might include the following items, in order:
1. Short module description.
2. Detailed module description.
3. Function prototype list.

4. Remarks/notes.

Again, multiline comments work as well.

Function Header Comments

Function headers should describe the syntax, purpose, and necessary caller information
in enough detail for each function (see Listing 1.6). These kind of comments are sec-
ondary in importance only to inline comments. Function header comments serve the
purpose of quickly informing the programmer about the requirements and specialties
of each function during development and extension of a module, mainly needed by
“foreign” developers who didn’t create the functions originally. A lack of function
header comments usually requires a developer to dive into the code itself to find out
the required information, which often results in mistakes because not all hidden traps
(sometimes very well hidden) are seen.

Listing 1.6 Typical function header comment.

PEPELEELELCL IR e e i i i rr g
/1l

// int irc_get_channel_ by name(string $name)

/1l

LEPELEEEEE IR e e i e rrr g
/1

/| Searches a channel by its name in the internal channel table and returns

/] its handle.

/1

Coding Conventions

JILEETEELEEE L r i i i rirr
/1l

/| Parameter:

/1 $name - name of channel to search for

/1l

TIPTTELLELEEE i i i i i i i rrrrl
/]

// Return value:

/1 Channel handle (numeric), @ on error

/1

LIPEETTELLEEE LT i i i e it rirrrrrrry
/1l

/] Global references:

/1 $irc_channel_array

/1l

JILEETEELEEL L n i i et irriirrrl

A function header comment should contain a collection of the following items,
in order:

1. Function prototype.

Detailed function description.
Remarks/notes.

Parameter description.
Return value description.

Global references.

N ke

Author and date of last change.

Inline Comments

Inline comments are placed directly into the code and should explain all questions
directly where they arise. Note that while you’re programming, it’s natural that every-
thing is perfectly clear to you as you type it. This is usually the cause for too few
comments. When you reopen this file at a later point, maybe even after a year, you’ll
have forgotten about all the structures you used and why you used them. We’ve
encountered this problem too often, in our own code and that of other people. The
rule for inline comments is that you can hardly use foo many. The only exception to
this rule is when comments are overused to the point that they obscure the code
they’re meant to describe. Also, you should be careful not to comment obvious things.
See Listing 1.7 for a few examples.

17

18

Chapter 1 Development Concepts

Listing 1.7 Bad inline comments.

function calculate_next_index ($base_index)

{

$base_index = $base_index + 1; /] increase $base_index by one

/1

/1

/| Table of contents

/1

// 1. Introduction

/] 2. About the authors

[LOTS of lines cut out]

/1

/1

$new_index = $base_index * COMPLICATED NUMBER / 3.14 + sin($base_index);
}

$base_index is increased by 1 in the first line of code—is that something to comment?
We doubt it. Everyone can see that $base_index is being incremented, but why is it
incremented, and why is it incremented by 1 exactly? A better comment would be
something like Jump to the next ordinal index we want to point to; it's
exactly one element away.

The same kind of problem is introduced with the second comment, but with a dif-
ferent cause. The programmer has pasted the complete reference for the algorithm into
the code, including lots of inappropriate junk. Of course, it’s good to describe in detail
what you’re doing, but you have to filter what’s really important and what isn’t.

Ask yourself these questions when commenting code:

= What are you doing?

= Why are you doing it?

= Why are you doing it this way?

= Why are you doing it at this point?

= How does this code aftect the other code?

= What does this code require?

= Are there any drawbacks to your method?
For example, when you're parsing strings, document the format of the input strings,
the tolerances of your parser (its reactions to errors and mistakes in the input), and its
output. If all this information is too heavy to include it directly into your code, keep
at least a pointer to external documentation where the reader can inform himself

about all aspects of the parser. Also, remember to update your function header com-
ments by placing a link to the documentation there as well.

Coding Conventions

Choosing Speaking Names

As mentioned earlier, choosing appropriate names for functions and variables is an
essential issue in programming. Generally, when selecting a name for a variable, it’s
important to first determine whether the variable is local or global. If the variable is
only visible in the local scope of a function, choose a short, precise name that states
the content or meaning of this variable. The variable name should consist of a maxi-
mum of two words, separated either by an underscore or by capital letters, as shown in
Listing 1.8.

Listing 1.8 Examples of local variable names.

$counter
$next_index
$nroptions
$cookieName

Remember not to mix naming schemes! Either use all lowercase variable names, separating
words with an underscore, or use capital letters to separate the words. You can also use
both capital letters and underscores to separate words, but never use capital letters for
one variable and underscores for another. This leads to mistakes and exhibits poor
style. After you've found your own style, keep it consistent throughout the project.

Each global variable should have a prefix that identifies the module to which it
belongs. This scheme helps to assign globals to their modules, as well as to avoid con-
flicts when there are two variables of the same name from different modules in the
global scope. The prefix should be separated from the variable name using an under-
score. The prefix should consist of a single word, most likely an abbreviation (see
Listing 1.9).

Listing 1.9 Examples of global variable names.

$phpPolls_setCookies
$phpPolls_lastIP
$db_session_id
$freakmod_last_known_user

The (Small) Size Advantage
Create smaller projects, each with a different naming style, for these reasons:

= You can find your preferred style.

= You'll be practiced whenever you have to adapt to someone else’s style.

19

20

Chapter 1 Development Concepts

As this example shows, global variable names tend to be longer than local variable
names. This is due not only to the module prefix but also to clarification practices.
When the definition and initialization point of a variable are unknown because
they’re hidden in a module to which you don’t have access, it’s very important to
reflect the variable’s meaning and contents in its name. There’s a practical limit to this,
of course—nobody would want to remember names of 40+ characters—but this is
more a limit of common sense.

Basically, you should name global variables just as you would describe them to
someone. For example, how would you describe the variable $phpPolls_lastIP? You
might not know what phpPolls does, but the name suggests that it has something to
do with polls. lastIP says that it’s the last IP... Which IP? You don’t know. Obviously,
the name for this global isn’t very well chosen, because it doesn’t describe its contents
exactly. Now suppose that you ask the purpose for this variable, and get the answer, “It
contains the IP of the last user who submitted a vote.” Think about a name for it now.
How does $phpPolls_last_voters_IP sound? Better, isn’t it? But although the name
itself might be good, it’s still not suitable because you’ve also seen two other globals
from phpPolls, both prefixed with phpPolls_ and then written in one word. For con-
sistency, you decide to separate different words within the name only by capitals:
$phpPolls_lastVotersIP.

Function names should be treated in the same elaborate style as global variables, but
with a few differences. Function names should describe their functionality and fit into
the flow of the language. Fitting names into the language flow is achieved by deter-
mining the actions that a function performs and choosing a name that will be the
most suitable in the majority of all occurrences of that name.

If a function determines whether a user is currently online, for example, it might
have one of the following names:

function get_online_status($user_name);
function check_online_status($user_name);
function user_status($user_name);
function user_online($user_name);
function is_user_online($user_name);

Depending on the return type, only the first and the last name in this list are suitable.
Assuming that the function would return a Boolean value, it would usually be used in
conjunction with an if() clause, where it would look like this:
= Choice 1:
if (user_status($user_name))

{

/| do something

Coding Conventions

= Choice 2:
if(is_user_online($user_name))

{
/| do something

}

In the first choice, the function name looks kind of displaced: “If the user status of
John then do something.” Check this against the second possibility, “If user John is
online then do something.” The second option doesn’t break the language flow and
makes much more sense when taking a first look. The first choice leaves questions
open: What status 1s being referred to and how is that status being returned? The
second function name clearly indicates that this function will check the online status
of someone and return this as a Boolean value.

‘What if the result of the check would be returned in a variable parameter of the

function?
= Choice 1:
function user_status($user_name, &$status)
{
/] retrieve status and return in $status
}
$success = user_status($user_name, $user_online);
= Choice 2:
function get_online_status($user_name, &$status)
{

/] retrieve status and return in $status

$success = get_online_status($user_name, $user_online);

Although user_status() isn’t a bad choice for a name for this purpose,
get_online_status() suits it better. The word get clearly indicates that the function
retrieves the online status and saves it somewhere—either in a global variable or in a
variable function argument.

For functions that simply do data processing, use active names instead of passive
names. Don’t use nouns such as huffman_encoder () or database_checker()—name
the functions huffman_encode () and check_database() or switch the words into the
opposite order, whichever will best fit your module prefix.

Is Your Code Bilingual? Trilingual?

One of the most common criticisms of code involves “nationalization,” the sprinkling of the programming
language (which usually has an anglophonic origin) with another language. In our case (Tobias being
from Italy, Till being from Germany), when we reviewed projects from local programmers, people liked to
use German and ltalian variable and function names instead of English names, which resulted in a
strange mix. As you probably don't use a mixture of English, French, Spanish, or whatever in your daily
correspondence, please also show consistency while programming and use English names with PHP. It
also helps foreign people to understand what you have written.

21

22

Chapter 1 Development Concepts

Keeping Clear and Consistent Interfaces

You may hate seeing the word consistency again, but for designing interfaces it’s a criti-
cal piece in the mosaic of programming.

Unfortunately, an example of how not to do it can be found in PHP itself.

When you're driving a car, the gas pedal is on the right and the brake is on the
left. When you change cars, you expect this setup to stay the same.You expect that
wherever you go, a red traffic light means stop and green means go. Similarly, when you
use a library to access files and have to pass a file handle to every function, it would be
very strange if the function to read from a file would expect the file handle as first
parameter, the write function would expect it as last parameter, and a third function
would expect it somewhere in the middle of its parameter list.

When designing an interface, you should first think about these things:

= What data will be exchanged using the interface?
= Which parameters do I really need?
= What are the common parameters that most (or all) interface functions share?

= What would be the most logical order for these parameters?

Keeping this in mind, once you’ve decided to do it in a certain way you should make
no exceptions to this rule in your module. Even internal functions should conform to
the rule. This strategy will enable you to make internal functions available in the inter-
face later on. Plus, your team members will thank you when they have to integrate
new code into your module.

If you look at the string functions in the PHP manual, you’ll find strpos(),
strchr(), strrchr(), and so on. All these functions take as parameters string
haystack, string needle, with haystack being the string in which to search and
needle being the string to search for. Now take a look at str_replace(). Not only
does this function suddenly introduce a different naming scheme, its arguments are
also the exact opposite of the rest of the functions: it accepts string needle, string
haystack.

When we asked the reason for this discrepancy, we got the answer that
str_replace() would be a fast replacement for ereg_replace() and that most people
would change their calls from ereg_replace() (accepting the reverse order arguments)
to str_replace (). Of course, this argument has a point. But why do the regex
functions accept their arguments in an order opposite to that of the string functions?
Because the regex functions in PHP reflect the ones in C. When developing an appli-
cation, it’s always annoying to see str_replace() sticking out from the rest of the
function group. When outlining the interfaces of your next libraries, take great care
that this situation doesn’t happen to you.

Coding Conventions

Structuring Code into Logical Groups

Applications usually consist of different function groups, each handling a special task
and/or area of the application. For example, when writing a database-backed applica-
tion, a function group should be responsible solely for handling database access. This
code builds an entity of its own and can safely be detached from the rest of the
program—if you designed it well. Function groups that logically perform only a
certain task should be designed in such a way that they can be treated independently
from the rest of the code. These functions should also be physically separated from the
main code, building a module.

Before implementing an application, you should create a list of all functions that
can be grouped together, forming a module, and create a separate design plan for each
module. Take great care to create detailed data flowcharts in order to make the mod-
ules capable of handling all demands of the application. The importance of outlining
on paper shouldn’t be underestimated. Space restrictions prevent us from going into
detail on this topic, but we encourage you to educate yourself with some of the very
good books available on design methods.

Abstracting Separate Chunks of Code

Abstracting blocks of code is a task that should be done during both planning and
implementation. Let’s say that a function will perform the following jobs:

1. Open a file.

Read a block of data from the file.
Validate the data.

Correct any errors in the data.
Write the data back to the file.
Close the file.

A

Each step can be packed into a separate block of code. It’s good style to abstract these
blocks and create separate functions out of them. Not only will this enable you to
reuse each code block in other functions (you’ll probably need file operation support
somewhere else as well), but it will also make the code much easier to read and debug.
You can make the abstracted parts bulletproof, equip them with error-handling sup-
port, and much more. If you tried to do this inline, your code would quickly grow
beyond manageable size and become very clumsy. Plus, if you use the same code
blocks in other functions and notice an error or need to change something, you’d have
to make the same corrections over and over in every other function using this block.
By abstracting, you centralize the critical points; by correcting a single line, you can
change the behavior of all related functions.

23

24

Chapter 1 Development Concepts

Using Files to Group Functions

We’ve shown that it pays to use multiple files for source code, but we encourage you
to also use files for most other resources, such as configuration data; custom headers,
footers, or other templates; and anything else that can be extracted from your project
as a separate entity.

Using multiple files for a single project ofters quite a few advantages:

= You get smaller source code files that are easier to maintain.

= You can create different revisions for each file instead of having to check in the
whole project for a small modification.

= You can detach resources from the project and reuse them in other projects.

= Different team members can work on the project simultaneously, without having
the trouble of merging when checking all files into the revision control system.

These issues apply to most resources that can be present in a project.

Files should be named according to their contents, optionally with a prefix if a
bunch of files belong to a larger group and should be placed into subdirectories from
the project root. For example, in a database abstraction layer with modules for access-
ing different databases packed into single files, each should be prefixed with dba_
(where dba stands for database abstraction), so that you'd get dba_mysql, dba_odbc,
dba_oracle, and so on.

Make sure that you can vary subdirectories later on by using configurable module
directories in your includes. For example (note that dba in this example doesn’t refer
to the PHP dba_* functions):

<?

require("config.php3");

require("$dba_root/dba.php3");
require("$socket_root/socket.php3");
require("$phpPolls_root/phpPollUI.php3");

1.

7>
The variables $dba_root, $socket_root, and $phpPolls_root in this example should be
contained in a central configuration file with global options for the whole project.
This configuration file should only contain options that are needed by every source
file independently, and thus have to be made globally available. Such options might
include environmental options such as the site name, file system locations, and so on.

Stay on the (Generic) Path

When including the configuration file from a subdirectory, always use relative paths to ensure that your
project is mobile on your filesystem and on your customers' systems as well—never rely on special condi-
tions of your developing environment being present in all deployment environments as well. Whatever
you can keep generic should be kept generic.

Writing Documentation

Writing Documentation

In addition to commenting and structuring, it’s important to pay attention to docu-
menting. The documentation for a project is probably the first part of the project that
your customers will see, and the first impression is the one that counts.

Professionally laid out documentation that contains more than the obligatory
“Follow the installation instructions in the README” should be a routine step in
your development process. Just as you expect a well-written manual for your cell
phone, new monitor, or other technical item purchased in even the smallest store,
your customers expect good documentation from you (not to mention that they’re
probably paying you a lot of money for it).

As with comments, extensive documentation is usually produced with the help of
RAD tools. Unfortunately, no tools exist yet that are designed especially for PHP, so
writing a manual is an unaided and thankless—yet required—job. However, this
shouldn’t do harm to your productivity. A complete manual should be designed very
much like a small book, featuring the following items:

= Introduction

= Table of contents

= User’s guide

= Technical documentation
= Developer’s guide

= Complete function reference

The user’s guide should describe in detail all features of your application’s interface (if
it has one) for a standard user. Don’t get too technical in this section, as it should only
be a “how to” kind of description. Be sure to cover every aspect elaborately. The
technical documentation should be written for technically interested users and
administrators and should contain technical requirements of your application, used and
introduced standards, as well as information about internal data processing if it would
be of any interest to the reader—and of course as your licenses permit. If you’re allow-
ing customers to see and/or modify the source code, include a developer’s guide to
explain the project’s structure, data flow, and internal relationships, as well as a function
reference listing all functions (including internal functions) along with a complete
description.

If you’re working on a team, professional technical writers are a great addition to
the crew—they have experience in creating in-depth technical documentation, as well
as enough time for writing it. Having a team member who’s occupied with develop-
ment also write the documentation creates a lot of additional stress, since developers
are usually busy enough trying to keep the deadlines.

25

26

Chapter 1 Development Concepts

An API Design Example

In the midst of all this theory, let’s design an application program interface (API) from
the ground up to familiarize you with the conventions and concepts discussed earlier.
Please note that this is a practical approach, not a theoretical approach. We’ve chosen
to do it in a practical manner to let you memorize each step; in future projects, you’ll
have to design APIs on a mere theoretical basis, without having seen a line of code
first. For hints, tips, and tricks about the theoretical approach, see Chapter 3,
“Application Design: A Real-Life Example.”

The module for which we’ll be creating an API is meant to handle a simple sched-
uler. The actual implementation of the scheduler functions isn’t of any importance;
remember that this is exactly what has to be obscured to the user. The user just wants
to manage a set of appointments, so the API has to present itself as just that, namely
providing an interface for appointment management. It’s not necessary to inform the
user of the underlying system, whether you’re using Julian or Gregorian dates or
maybe even your own format—at some point, you might want to provide an extra set
of such features to the user (for example, date format conversion), but it’s completely
unnecessary when all you need initially is simply to enable someone to manage
appointments.

On the other hand, this doesn’t mean preventing or even disabling a future imple-
mentation of these features. The trick when designing an API is to meet your
requirements exactly, while being able to extend the API to any eventual needed
functionality. This requires in-depth planning and thoughtful definitions, as discussed
throughout this chapter.

The API has to present itself to the user as the only way of accessing the function-
ality of the module it represents. No functionality can be missing, nor can any
unnecessary functionality be available—or even functionality that doesn’t belong
directly to this module.

The list of requirements for a simple scheduler may be as follows:

= Add an event.
= Delete an event.
= Retrieve a list of upcoming events.
Let’s define prototypes for the add and delete functions first, as shown in Listing 1.10.

‘What might these functions need as information and what could they provide as
return values?

Listing 1.10 Prototypes for the first two functions.

void add_an_event(int day, int month, int year, int hour, int minutes,
=int seconds, string description);

void delete_an_event(int day, int month, int year, int hour, int minutes,
=int seconds);

An API Design Example

This is probably what comes to mind first: an interface that accepts a “common sense”
list of parameters, namely the date in day/month/year variables and the time in
hours/minutes/seconds, as well as a string for the description of an appointment. The
functions don’t return anything; their names are speaking.

Speaking, yes—but well-speaking? add_an_event () is speaking for sure, but never-
theless a bad choice for a function like this. First of all, the function will be meant for
global access; that is, it’s a main element for the API. As such, it should identify itself
clearly as belonging to this API as well, by using a name prefix.

What could this prefix be called? calendar and scheduler are good choices; in this
example, we’ll use calendar (see Listing 1.11).

Listing 1.11 Renamed function prototypes.

void calendar_add_an_event(int day, int month, int year, int hour, int minutes,
=int seconds, string description);

void calendar_delete_an_event(int day, int month, int year, int hour, int minutes,
=int seconds);

Now we’ve got a prefix, but the names are still unsatisfactory. The an in
calendar_add_an_event() and similarly in calendar_delete_an_event() isn’t really
needed; it’s a relic from choosing names that are “too speaking.” Leaving out words
such as a, an, and the is a good practice when choosing function names; most of the
time such words use up space in the name but don’t make a big difference because
they have no explanatory function. Moreover, they should definitely be avoided when
choosing variable names; in variable names, it makes absolutely no sense to choose a
name such as $a_key or $the_key, since the fact that it’s a key is obvious. It makes
more sense to select a name that explains what key; for example, $last_user_key.
Listing 1.12 shows the newly renamed functions.

Listing 1.12 Final function names.

void calendar_add_event(int day, int month, int year, int hour, int minutes,
=int seconds, string description);

void calendar_delete _event(int day, int month, int year, int hour, int minutes,
=int seconds);

On to the next question. These functions carry a huge parameter list. Is this necessary?
The parameters as they are now have been chosen intuitively, according to the com-
mon date format that separates day, month, year, hour, minute, and second. However,
interchanging information with such an interface is a kludge. Functions should hardly
ever need to accept more than five parameters. If there are more parameters to be
passed, you should think about passing them using a structure. Structures help to keep
the interface clean, which is sometimes a much more worthwhile goal than avoiding
the extra overhead that structures impose when initializing and/or modifying them.

27

28

Chapter 1 Development Concepts

Before trying to fit all parameters into a structure, there’s still the possibility of
alternative data formats. To encode date and time data, for example, you might use
BCD (Binary Coded Digits) format or UNIX timestamp format, to name just two
possibilities. Both formats pack all these required variables into a single one. BCD is
partly still very widespread, but when it comes to PHP, which originates from a
UNIX-like platform, timestamps dominate (see Listing 1.13). In case you haven’t
encountered timestamps yet, they count the number of seconds since midnight UTC,
January 1, 1970, expressed as a decimal number in a 32-bit value. This results in a
wraparound in the year 2106, but since PHP doesn’t have a fixed 32-bit type to
handle timestamps, it’s possible for PHP to transparently change the timestamp size to
64-bit in order to remain Y2.106k compliant.Your applications won’t notice it.

Another advantage of timestamps is the fact that a large number of PHP functions
convert them into human-readable dates and back. Its also easy to do calculations with
timestamps—to get a time difference between two events, for example, you just have
to subtract one timestamp from the other.

Listing 1.13 Corrected API.

void calendar_add_event(int timestamp, string description);
void calendar_delete _event(int timestamp, int Seconds);

As you can see, it can be very important to check for existing formats and methods
for handling a special kind of data. The current format not only shortens the argument
list by 350%, it’s also—by accident—the native format of the underlying architecture
to handle date and time. Checking native formats and existing standards is a step never
to be underestimated in your research phase; during development, nothing should
occur to you simply “by accident.” Knowing the territory is mandatory.

Keeping this in mind, let’s take a look at the third required function, retrieving a list
of upcoming events. We'll run into problems now; since the return value isn’t going to
be a single value but rather a variable list of associated values:

Timestamp 1 => Description 1
Timestamp 2 => Description 2
Timestamp 3 => Description 3

The data could be returned by having parameters passed by reference (read more
about them in Chapter 2,“Advanced Syntax”):
I

// List function in pseudocode
/1

function calendar_get_event_ list($range, &$timestamp, &$description)

{

An API Design Example

while($current_timestamp < $range)

{

$timestamp[] = $next_event_timestamp;
$description[] = $next_event_description;

}

This pseudocode would fill two arrays, $timestamp and $description, with all upcom-
ing events in the requested range. Index 1 would thus contain the timestamp for event
1 in $timestamp[@] and the description for event 1 in $description[@].

This is a sub-optimal solution, however, since having two separated variables han-
dling grouped elements is poor style. To handle grouped elements, a grouping datatype
should be used—either a class (the only way to create structured types in PHP) or an
associative array.

Associative arrays have the advantage of being searchable both by key (the indexing
component—in regular arrays, usually 0, 1, 2, 3, and so on) and by value (the informa-
tive component), but have no predefined structure. Moreover, they have a variable
structure that can be changed on the fly, resulting in data that’s not guaranteed to have
a valid structure, and are a bit clumsy to handle.

Classes have the advantage of showing their structure perfectly, but need a pre-
defined datatype. If we defined a datatype for the return value now, for consistency we
should also use this datatype to create and delete events. This in turn would require us
to modify the existing functions afterward—it’s undesirable to add just one function.
You can see now that detailed theoretical planning beforehand could have saved us
valuable time; defining a structured datatype for appointments before even starting to
define the first two functions would have enabled us to use this datatype then, leaving
us with a straight-to-the-point solution that we could reimplement now in our list
function.

Since a class would introduce a style break into the code, we’ll use an associative
array. The list function won't be returning an error code, so we’ll use the return value
of the function to pass the data back to the caller. Remember that if you intend to use
error codes, you should make all functions return an error code even if they’ll always
succeed. Usually, the user of your API won’t know whether a function can fail, and
will expect every function to return an error code if some of your functions have
already returned error codes.You should also create a consistent error code scheme—
but more about that in Chapter 3.

Back to the list function. This could be the future prototype:

function calendar_get_event list($range)

{

// Retrieve event list

}

$event_list = calendar_get_event list($required_range);

continues

29

30

Chapter 1 Development Concepts

for($i = 0; $1i < count($event_list); $i++)
print("Event at $event list[$i]["time"]: $event list[$i]["text"]
");

This code might produce something like the following:

Event at 95859383: Team meeting

Event at 95867495: Deadline for Telco project

Event at 95888371: XML Seminar
Looks okay, but there’s another major mistake in the code. In the for() loop, the data
is returned in the two-dimensional array using the associative keys time and text.The
variables were named differently earlier; they were $timestamp for the time and
$description for the descriptive text. When filling an associative array, use the same
name for keys that you've chosen for the appropriate variables; in this case, the for()
loop should be able to access the array as follows:

function calendar_get_event_list($range)

{

/] Retrieve event list

}
$event_list = calendar_get_even_list($required_range);

for($i = 0; $1i < count($event_list); $i++)
print("Event at $event_list[$i]["timestamp"]:
=$event_list[$i]["description"]
");

Summary

Application development is more than just scribbling down code, getting the syntax
right, and making sure that the software runs. Because software won't be read only by
a computer but also by other programmers (or you) in the future, source code should
be clear and concise. Well-written code is easy to read, extensively commented, and
uses natural-language expressions. APIs should make clear and consistent interfaces
available, be structured into logical units, and abstract the back end. And because larger
projects aren’t self~explanatory even with the clearest code, technical documentation is
needed.

The coding conventions presented in this chapter are based on common sense
guides from the accumulated experience of many programmers, not on mandated
rules. They’re not hard to follow—and they’ll make your life and those of your fellow
programmers a good deal easier.

Approach it and there is no beginning;
Sfollow it and there is no end.

You can’t know it,

but you can be it,

at ease in your own life.

Advanced Syntax

The world is formed from the void,
like utensils from a block of wood.
The Master knows the utensils,
yet keeps to the block:

thus he can use all things.

As MENTIONED IN CHAPTER 1, WE BELIEVE that fo truly master a language, it’s crucial
to understand not just the syntax and semantics of the language, but its philosophy, background,
and design characteristics. In order to master PHP, you have to know about all its
specialties as well.

PHP Syntax

PHP is a mixture of different languages. You can see a strong influence from C (some
say Java, but Java also inherited from C). While PHP’s syntax is strongly influenced by
C, its semantics difter from C’s semantics. PHP is interpreted and knows no strict
variable types. When you refer to a variable, its type is determined “on the fly” and
treated just as the current situation requires. This is a somewhat simplified explanation,
but you should keep this in mind when developing.

32 Chapter 2 Advanced Syntax

PHP is an interpreted language, in which code is evaluated and executed step by
step. Add to that fact PHP’s way of handling variables, and you’ve introduced a lot of
possibilities to programming, but also a lot of traps. This chapter deals with the typical
do’s and don'’ts for using advanced syntactic and algorithmic features:

Defining constants

Array functions

Classes

Linked lists

Trees

Associative arrays
Multidimensional arrays
Variable arguments and variable argument lists
Variable variable names
Variable function names
Selt-modifying high-level code
Polymorphism

The following sections cover all these issues in more detail.

Defining Constants

While there is no expression or construct to define constants in the form of unmodifi-

able variables in PHP, you can nevertheless accomplish this objective by using defined

values. Defined values should be used to replace all fixed values such as error codes, file

format constants, special strings, and whatever else will have a special meaning to the

program or library and not change during execution.
Defined values have the great advantage that they clarify the meaning of special
values, while at the same time providing another level of abstraction:

// read file type from input
$file_type = fgets($file, 32);

// decide what kind of file it is
switch($file_type)
{
case FT_GIF_IMAGE: /* handle GIFs here */
break;

case FT_PNG_IMAGE: /* handle PNGs here */
break;

case FT_ZIP_ARCHIVE: /* handle ZIPs here */
break;

Array Functions

Note: By special values, we'’re referring to “magic numbers” or special strings. For
example, if you want to access a GIF file from your program, and internally your
program recognizes GIF by the “magic number” 6 (just because it’s chosen so by the
programmer—it could as easily be 1234), then you can create a definition for this
value: define("GIF_FILE", 6); and further on access your “magic number” by the
keyword GIF_FILE.

This code snippet reads an identifier from an input file and then decides how to act
on this identifier. The identifier indicates whether the following data is a GIF image, a
PNG image, or a ZIP archive. The identifiers might look like this:

GIF image "GIF_IMG"
PNG image "PNG_IMG"
ZIP archive "ZIP_ARC"

These identifiers would then be defined in an include file:

define("FT_GIF_IMAGE", "GIF_IMG");

define("FT_PNG_IMAGE", "PNG_IMG");

define("FT_ZIP_ARCHIVE", "ZIP_ARC');

This setup has the advantage that you can keep all identifiers in a central place. If one
of the identifiers needs to be changed, you only need to change its definition—
otherwise, you would have to dig through the code, searching and replacing each
occurrence of this string. Using defined values, this work will be reduced to changing
a single line of code.

The names of defined values should always be written in uppercase to denote them
as such, and in most cases they should have prefixes, just like library functions. In the
preceding example, the identifiers have been prefixed with FT_ for file type.

Try to use defined values as often as possible. Whenever you encounter a situation
in which you might hardcode a value into your program, hardcoding is probably a bad
idea. Operating systems or similar low-level-oriented programs usually have the largest
list of definitions because, to allow them to be portable, every little bit has to be
abstracted. They can’t make assumptions about the byte size, the word size, the register
size—generally everything you see is abstracted in some way. Since PHP is portable
per se, meaning that it’s not bound to any certain hardware or other environmental
configuration (its interpreter won’t change the environment regardless of the
underlying operating system), it’s not really necessary to be as extreme with definitions
in PHP But it’s good coding style.

Array Functions

The most important array functions are list(), each(), and count().

list() is sort of an operator, forming an lvalue (a value that can be used on the left
side of an expression) out of a set of variables, which represents itself as a new entity
similar to an element of a multidimensional array. As arguments, it takes a list of
variables. When something is being assigned to it (a list of variables or an array

33

34

Chapter 2 Advanced Syntax

element), the list of variables given as arguments to the list() operator is parsed from
left to right. These arguments are then assigned a corresponding value from the rvalue
(a value that’s used on the right side of an expression). This is best explained using a
code example:
$result = mysql_db_query($mysql_handle, $mysql_db,
"SELECT car_type, car_color, car_speed
FROM cars WHERE car_id=$car_id");

list($car_type, $car_color, $car_speed) = mysql_fetch_row($result);

Note: This code is used here strictly for example. It’s not a good idea to implement
code like this in real-life programs, as it relies on the fields remaining in the same
order. If you change the field ordering, you have to change the variable ordering in
the 1ist() statement as well. Using associative arrays and manual value extraction
imposes an overhead in programming but results in better code stability. Code as
shown above should only be implemented for optimization purposes.

The SQL query will select the values car_type, car_color, and car_speed from a
table containing car information. The result of the query is then retrieved using
mysql_fetch_row(), which returns the three values in an array. car_type will be at
index 0, car_color at index 1, and car_speed at index 2. Read from left to right, these
values will be assigned value by value to the arguments given in the list() statement.

Thus, you’ll have the following assignments:

List Argument SQL Field

$car_type car_type (array index 0)
$car_color car_color (array index 1)
$car_speed car_speed (array index 2)

The 1ist() statement is very useful when you want to separate a collection of values
into single variables—something that happens quite often when doing database
programming. Note, however, that list() can only act as Ivalue, not as rvalue—you
can’t use list() to exchange a set of variables. For example, the following statement
won’t work:

list($vart, $var2) = list($var2, $vart);

The statement each() is often used in combination with the 1list() statement. each()
traverses an array and returns each of its elements in a key/value combination. This is
done by “walking” the input array. PHP assigns an internal pointer to each array. This
pointer initially points to the first element of the array. Each call to each() returns the
element that’s being pointed to by the internal pointer; afterward, this pointer will be
incremented.

Array Functions

The return format of the key/value pair is a four-element array with the keys "0",
"1", "key", and "value".This means that it can be used as both an indexed array and
an associative array. The indexed part of the array (with the keys "0" and "1") contains
the key of the source element at index 0; the value can be found at index 1. The same
information can be accessed by using the associative part of the array. (Actually,
separating associative and indexed parts of an array is not correct here, since indexed
arrays are just a special form of associative arrays—theoretically, theyre different things,
but in practice theyre the same in PHP. See the later discussion for details.) The key of
the source element is contained in "key" and the value in "value". For example:

$my_array = array("Element 1", "Element 2", "Element 3");

This will simply create an array with the following contents:

Element 1

Element 2

Element 3
To better understand the principle behind each(), it’s useful to create a more detailed
listing of this array:

Key Value

0 Element 1
1 Element 2
3 Element 3

This is the listing of all key/value pairs contained in the array $my_array. Now we’ll
use each() on it:

list($key, $value) = each($my_array);
This first call to each() returns the first four-element array containing the first
key/value pair from $my_array. Note that since we only gave two arguments to the
list() operator, only the values from the four-element array can be assigned: These

are "0", the first key, and "Element 1", the first value element from $my_array.
The following code lists the contents of an array:

$my_array = array("Element 1", "Element 2", "Element 3");

while(list($key, $value) = each($my_array))
print("Key: $key, Value: $value
");

This script produces an output like that shown in Figure 2.1.

35

36

Chapter 2 Advanced Syntax

File Edt “iew Go Communicator Help

Eey: 0, Value: Element 1
Eey: 1, Value: Element 2
Eey: 2, Value: Element 3

Figure 2.1 Array listing using each().

You can also use each() to show the elements that each() itself returns:

$my_array = array("Element 1", "Element 2", "Element 3");

while($four_element_array = each($my_array))

{
while(list($key, $value) = each($four_element_array))
print("Key $key, Value $value
");

}

This would produce the result shown in Figure 2.2.

Y Netscape M= E
e Edit View Go Communicator Help
PR AT

Key 1, Value Element 1
Key value, Value Element 1
Key 0, Value 0

Key key, Value 0

Key 1, Value Element 2
Eey walue, Value Element 2
Key 0, Value 1

Key key, Value 1

Key 1, Value Element 3
Key value, Value Element 3
Eey 0, Value 2

EKey key, Value 2

e I T 20

Figure 2.2 Return values of each().

You can clearly see the entries 1, value, 0, and key in the output, and @ and 1 should
be used in conjunction with each other just as "key" and "value". Notice that each
pair represents one entry of the source array.

Using each() on an indexed array might not seem to make sense at first, since
the elements of an indexed array can be read much more easily by using a for()
statement—nhowever, there’s a few traps in this. First of all, as indexed arrays are a

Array Functions

special form of associative array in PHP, PHP allows nonconsecutive array indices; in
other words, you might have an array like this:

Key/Index Value
0 Landon
3 Graeme
4 Tobias
10 Till

This array only has the indices 0, 3, 4, and 10 in use—the rest are simply not assigned.
Using the count () function (which returns the number of assigned elements in an
array) on this array will correctly return four assigned elements, but you won'’t be able
to use a for() statement on this array because you don’t know the corresponding keys
to all values:

$my array = array(@ => "Landon", 3 => "Graeme", 4 => "Tobias", 10 => "Till");

for($i = 0; $i < count($my_array); $it+)
print("Element $i: $my_array[$i]
");

This will give the output shown in Figure 2.3.

File Edt Yiew Go Communicator Help

Element 0: Landen
Element 1:
Element 2:
Element 2 Graetne

Figure 2.3 Invalidly accessing a nonconsecutive array consecutively.

Error Reporting
If you have set up PHP to report invalid array indices, a few warnings will appear as well. It's a good idea
to set the level of error reports as high as possible during development.

Using a simple for () loop is not enough for arrays of this kind; it accesses indices that
don’t have a value assigned. If PHP provides a stricter environment, this would result
in an exception and immediate termination of the script. Therefore, whenever you’re
unsure about the contents and consistency of arrays, youre doomed to using each().

37

38

Chapter 2 Advanced Syntax

each() is also a very good tool to ensure that youre not accessing arrays out of
their bounds—another reason for exceptions. PHP handles out-of-bound accesses in a
quite relaxed manner (it will most likely only send you a warning); however, we have
managed to crash PHP repeatedly by using invalid array accesses. The best case was
that PHP just quit with an exception; the worst was that the PHP module suddenly
used 100% of the CPU time and the server process had to be killed—a situation that
should be avoided by all means in a production environment. Even though this was
most likely triggered by buggy internal array handling in PHP, you still shouldn’t try
to force invalid array accesses. It’s very bad coding practice, and since PHP provides
each(), list(), and associated functions and operators to secure your code, you should
use them as well.

The original purpose of each() was to use it with “real” associative arrays, which
use non-numeric keys to index data. Whenever this is the case, it’s impossible to gain
access to the stored data without a function that can list all available keys (assuming
that you don’t know which keys are in use). These arrays could be organized similarly
to the array described earlier, but with keys and values having the opposite order:

$my_array = array("Landon" => 1, "Graeme" => 2, "Tobias" => 3, "Till" => 4);
while(list($key, $value) = each($my_array))
print("Key $key, Value $value
");

Now you have the array indexed by name, not by number—how are you going to
find out which names are contained in the array if you don’t use predefined keys?
each () allows you to do so, as Figure 2.4 shows.

File Edit “iew Go Communicator
Help

Eey Landon, Value 1
Eey Graeme, Value 2
Eey Tobias, Value 3
Eey Till, WVahie 4

Fias EEray)

Figure 2.4 Associative array listing using each().

Not a very surprising result; nevertheless, quite useful to know.

One last important note about each():To enable you to retrieve one key/value pair
per iteration, PHP has to remember which pair you last accessed. Consequently, when
doing another iteration on the same array, no two of the same key/value pairs will be
returned. To reset the internal array counter, you have to use the function reset().

Array Functions

This function makes PHP’ internal pointer move back to the first element of the
array, whose value is also the return value of reset().

The following script accesses the same array twice, in two different loops, both
times using each():

$my_array = array("Landon" => 1, "Graeme" => 2, "Tobias" => 3, "Till" => 4);
print("<h2>Looping without reset()</h2>");
print("<h3>First loop</h3>");

for($i = 0; $i < 2; $it++)
{
list($key, $value) = each($my_array);
print("Key $key, Value $value
");
}

print("<h3>Second loop</h3>");

for($i = 0; $i < 2; $i++)
{
list($key, $value) = each($my_array);
print("Key $key, Value $value
");
}
As the output in Figure 2.5 shows, the second loop will not start from the first element
again; instead, it continues where the first loop left oft. This is due to PHP’ internal
array pointer not having been reset. A small modification to the script creates a
different result (see Figure 2.6):

$my_array = array("'Landon" => 1, "Graeme" => 2, "Tobias" => 3, "Till" => 4);

print("<h2>Looping with reset()</h2>");

print("<h3>First loop</h3>");

for($i = 0; $i < 2; $it++)

{ list($key, $value) = each($my_array);
print("Key $key, Value $value
");

}

print("<h3>Calling reset()</h3>");

reset($my_array);

print("<h3>Second loop</h3>");

for($i = 0; $i < 2; $it++)

{

list($key, $value) = each($my_array);
print("Key $key, Value $value
");

40 Chapter 2 Advanced Syntax

¥ Netscape [_ O] =]
Fie Edit Yiew Go Communicator Help
DEHSHEEEF AT

Looping without reset()

First loop

Key Landon, Value 1
Key Graeme, Value 2

Second loop

Key Tobiag, Value 3
Key Till, Value 4

= == [Dacument Dane

Figure 2.5 Using each() without reset().

¥ Netscape _ O
Fie Edt View Go Communicalor Help
T T

Looping with reset()

First loop

EKey Landen, Value 1
Eey Graeme, Value 2

Calling reset()
Second loop

Eey Landen, Value 1
Key Graeme, Value 2

= (== |Document Done

Figure 2.6 Using each() in conjunction with reset().

A call to each() has been inserted between the two loops. The second usage of each()
restarts retrieving key/value pairs from the first element.

Along with reset(), several functions are available to split up the activities of
each(): next(), prev(), and current(). Using these functions, it’s possible to manually
traverse an array in both directions. next () returns the current element and then
advances the internal array pointer; prev() does the same but moves the array pointer
in the opposite direction. current() simply returns the array element currently being
pointed to. However, these functions return false whenever they encounter an empty,
unassigned element, as well as when encountering the end of the array. There’s no way
to distinguish both cases; thus, these functions should be used only when each() is not
a choice and the situation of encountering an unassigned element can be eliminated.

In addition to the functions just described, many other PHP functions deal with
arrays. For a complete description, refer to the manual. With PHP 4.0, the number of
array functions increased tremendously; covering all of them here wouldn’t allow us to
focus on more important issues.

PHP and OOP

PHP and OOP

In the early 1990s, the most popular compilers—for example, the family of Borland
compilers—became able to handle the object-oriented programming (OOP)
extensions of such “base languages” as Pascal and C. Suddenly, classes, objects,
templates, and inheritance were the buzzwords, the hottest topics in software
development. OOP was hip and a lot of companies jumped onto the trend by
converting all their software packages from procedural to object-based applications.
Today the hype has faded, but a language that can’t handle objects is still considered
out of date. PHP supports objects, and in this section we discuss the pros and cons of
OOP with PHP.

‘We think that the movement to develop all software OOP-style only is a little bit
doubtful. Big software packages have been converted into objects with a lot of
financial effort—not even counting the time it took the developers to completely
rethink, restructure, and reimplement thousands of lines of code. These software
packages were running perfectly using a procedural approach, and some of them didn’t
even need object support. We have seen advertisements for software security systems
that said “now completely reimplemented using OOP” All these systems did was
check a dongle (a little hardware device plugged into the parallel port of a PC to serve
as a hardware key), maybe ask for password phrases, and in some cases encrypt
executables they were being linked to. The applications relying on those packages
often didn’t even have to call a special procedure to initiate the password check; some
of these packages were self-executing when the application was run. In other cases, the
environment check was reduced to a call of a single function—but who needs an
object for a single function? Internally, the execution of the program code was strictly
linear, and hardware access was already abstracted by procedures. (And actually, some of
the ads were just lying.)

The most questionable case that we encountered was that of a developer who
was working on a graphics library to draw complex mathematical two- and three-
dimensional objects. He based his decision to use objects on the fact that he met a
Borland representative at a conference, and this person suggested using OOP. Creating
valuable software systems based on suggestions? Not the way to go.

‘What advantages do objects have, how is OOP different from the procedural
approach, and why should we think about this anyway?

The last question first. It’s important to think about whether to use OOP with
PHP because it makes no sense to use a technique that might impose more overhead
in development, is not well supported by the underlying architecture, and, finally,
won’t make any difference to your application. Procedurally oriented projects can be
as effective, as maintainable, and as extensible as object-oriented projects. Table 2.1
shows the most important difterences between these two approaches.

41

42

Chapter 2 Advanced Syntax

Table 2.1 Object-Oriented Programming Versus Procedural Programming

Objects

Complete data encapsulation
Allows multiple instances easily

Allows additional functionality
while preserving the interface
by using inheritance

Self-centered; the object keeps its
dataset by itself and is solely
responsible for keeping it valid

and for granting access to other parties

Provides very easy means to
assure data integrity, initialization,
and cleanup (constructors/destructors)

Isolated namespace

Procedures

No data encapsulation; only works using
parameter abstraction

No multiple instances; different datasets have to
be handled by using copies of all variables

No inheritance; additional functionality only by
API providing another APT layer or changing
the API completely

Globally oriented; procedures can’t keep their
own datasets; data is provided by the caller and
managed only indirectly by the procedures

Hard to assure data integrity; initialization and
cleanup has to be done explicitly

Names have to be introduced into the global
namespace

This table lists only the most significant differences; there are more, but you can
already see that it doesn’t look very good for procedures. Are procedures really as bad
as it seems, though? Does it mean that OOP as a new “technology” will replace the
old one? It depends on your goals and the platform you’re working on. In our case,
the platform is PHP. PHP supports objects, of course, but in a very special way. This is
related to the variable handling of the interpreter.

Whenever PHP encounters a statement for which write access to a variable is
needed, it evaluates and calculates the data that will be written into the variable, copies
it, and assigns the result to the target space in memory. (This description is a little bit
simplified, but you get the idea.)

$some_var = 2;

$my_var = $some_var * 3;

$new_var = $some_var + $my_var;
Looking at this script, PHP will
= Create space for $some_var and write 2 into it.

= Create space for $my_var, retrieve the value of $some_var, multiply it by 3, and
assign it to the newly allocated memory.

= Create space for $new_var, retrieve the values of $some_var and $my_var, total
them, and write them back to the new place in memory.

PHP and OOP 43

Well, this sounds nice and logical—but these are simple types and you’ve worked with
them many times already. Things are very difterent (and illogical) when PHP is
handling classes:

class my_class

{

var $vart, $var2, $var3;

}
$my_object = new my_class;
$my _object->vari = 1;

$my_object->var2
$my_object->var3

i n
w N

$new_object = $my_object;

$new_object->vari
$new_object->var2
$new_object->var3 = 1;

n n
N w

print("My object goes $my object->vari, $my object->var2,

=$my_object->var3 !
");

print("New object goes $new_object->vart, $new_object->var2,

=$new_object->var3 !
");
‘What do you think this will produce as output? The script first declares a class, creates
one instance of it, and assigns values to its three properties. After having done this, it
creates a new reference to this object, reassigns its properties, and then just prints out
each property by using both references. Remember, one instance. Figure 2.7 shows
the result.

Wy object goes 1, 2, 3 |
Wew object goes 3,2, 1|

Figure 2.7 PHP creating a copy instead of a reference.

44

Chapter 2 Advanced Syntax

If you're not surprised now, you either know PHP very well already or haven’t
thought enough about objects yet. PHP has created a copy, a new instance of my_class
instead of just a new reference! This is not the desired behavior, since the new operator
is supposed to create an instance of my_class in memory, returning a reference to it.
Thus, when assigning this reference to another variable, only the reference should be
copied, leaving the original data untouched—similar to a file system link, which allows
access to the same data through different locations on the file system. This behavior of
PHP—creating copies of referenced data rather than just the reference itself—may not
sound important enough to focus on; however, you’ll see in a moment that it actually
does make a difference.

Note: At the time of this writing, both PHP 3.0 and PHP 4.0 are using copy syntax.
A chat with someone closely involved in the core development revealed that the plan is
to change the default behavior to use a reference syntax, but this change would cause a
loss of backward compatibility. A possible change is planned with version 4.1—if this
happens, information contained here will be invalid for all future versions.

Warning

PHP 3.0 does not implement proper garbage collection. Whenever you're
writing something into a variable, new space is being allocated in memory
instead of reusing the old space. unset() can work around this a bit—even
though it doesn’t release the memory, it marks it as being reusable—however,
after some time, long-term scripts will eat up your server’s memory. If you
intend to run long-term scripts, make sure that you free database results with
(for example) mysql_free_result(), and use unset() on all variables that no
longer contain valuable information. No memory will be freed until the whole
script is terminated!

For example, take a tree structure. The class building a tree node will look like this:

class tree_node

{ var $left_child, $right_child;
var $value;
}
Just a simple tree node, of course, but it has everything we need: a link to the left child
and a link to the right child, as well as a variable containing the contents of this node.
Now we’ll build a simple tree:
$root_node = new tree_node;

$left_node = new tree_node;
$right_node = new right_node;

PHP and OOP

$root_node->value = 1
$left_node->value = 2;
$right_node->value = 3;

3

$root_node->left_child = $left_node;
$root_node->right_child = $right_node;

This code simply builds a tree with one root node and two children, assigning a

different value to each of them. Traversing the tree could be done with a function
like this:

function traverse_tree($start_node)

{
$node = $start_node;
print("Value is $node->value
");
print("Traversing left tree:
");
traverse_tree($node->left);
print("Traversing right tree:
");
traverse_tree($node->right);

}

Forgetting for the moment that this recursive function will never return because our
tree doesn’t have a stop-marker set (the function won’t know which node actually has
a child and which node doesn’t), let’s take a look at how it works instead and how
PHP will handle it.

The critical point is already reached in the first line, where $node is being assigned
a value. $start_node as parameter contains the instance of the node from which to
start, and the assignment to $node will create a copy of it. The fact that it creates a
copy is not that important for a function that simply recurses the tree and prints out
the node contents, but it can be very important as soon as you plan to change the tree
somewhere.

Now assume that you want to write a function that appends a new node to the
leftmost leaf in the tree. No problem—just write a recursive function that counts the
jumps to the left and returns the leaf with the highest count. After that, simply change
the child links of this object and you're done. Wait a second. Are you really done?
Think a moment about what you’ve changed (see Figure 2.8).You've changed the copy
of the leftmost leaf, not the leaf itself! As soon as your function returns, your changes
are lost, gone for good.

45

46 Chapter 2 Advanced Syntax

$root
Node Data
Left Subnode Node Data Right Subnode Node Data
Left Data Right Data Left Data Right Data
L R L R L R L R
L|R L|R L|R L|R L|R L|R L|R L|R

Figure 2.8 Trees that are built using copy syntax.

You could return a reference to the instance and change it using this simple “pointer”
mechanism that PHP provides. Then you will have changed the object itself and not
its copy. As soon as you're going to traverse the tree again, though, you'll see
something strange—nothing seems to have changed. And indeed, nothing has changed.
This is because the parent of the node you wanted to change keeps its own copy of the
same data! Remember, $node->left is nothing more than another copy of a node in
the tree, and this is the copy that the tree-walker will evaluate. The copy you changed
will remain outside the tree and end up in the garbage collector. To change this node
as well, you'd need to pass references to the parents as well, to the parents of the
parents, and to their parents in turn.You’'ll end up in another recursive function, which
is more than tricky to code and won’t work in 99% of all cases.

Classes: PHP 3.0 Versus PHP 4.0

PHP 4.0 has learned from the inability of PHP 3.0 to handle object referencing and
now supports “true” references. “True” is in quotes here because they don't really
point to the memory the other variable is occupying; PHP only interprets these
variables as references and acts differently. Embedded in the preceding example, the
code would look like this:

/| create multiple references to the original object

$new_object = &$my_object;

$another_object = &$new object;
This code creates two references to the same object. Note that $another_object is
being assigned as a reference to $new_object, not as a copy of it. When trying to copy
references, PHP won’t copy the reference but instead will create a copy of the referred
variable. Only when you subsequently use references (to copy a reference, you're
required to use the reference operator again), both $new_object and $another_object
can be used to modify data within $my_object.

PHP and OOP

For the different PHP versions, we’d make the recommendations shown in the
following sections.

Classes in PHP 3.0

Data: Don't use classes for complex data structures that require true pointers (such as
trees). If you have to, try to limit class usage to data collection, not data management.
Code: Use classes only to structure APIs that are not hurt by the copy syntax. Think about
whether your project might be realized with procedures; if so, seriously consider this
option. Procedures are reliable and proven to work, while objects bear quite a few traps.

Classes in PHP 4.0

Use classes with care, and make sure that you can differentiate between copies and
references of objects. Pay attention to which types you’re passing and how to deal with
them; as soon as you forget a single magic ampersand (&), PHP will create a copy of
your object and most likely break consistencies in your data.

Classes have been improved in PHP 4.0, but we're still skeptical. We have heard
opinions on both sides—one group insisting that objects are trash and not to be used
in a language like PHP, and the other group favoring objects over any procedural
approach, even in PHP 3.0. For those who are working with procedures only, objects
seem to be a sleeping beast that’s better left untouched; for the OOP gang, the “PP”
(procedural people) are idiots. It’s almost like a religious war. Wherever we brought up
the topic, it quickly resulted in endless and resultless discussions.

We honestly think that both extremes are wrong. It’s never a good idea to ignore
features, nor it is a good idea to make use of them without considering the drawbacks.
We dislike saying that it’s a matter of personal preference, as technologies should never
be treated as such. Our recommendation: Free yourself of any prejudices you might
have—especially the prejudices of others—and then decide objectively what’s best for
your project.

Implementing Classes

Leaving pros and cons behind, classes are an important language element, and it seems
that there’s always a demand for explanation of class implementation in PHP.

Classes in PHP are pretty straightforward to implement. You’ll know most of the
keywords from other languages:

class shopping_cart
{

var $item_list;

function pick($item, $quantity)
{

$this->item_list[$item] += $quantity;

continues

47

48

Chapter 2 Advanced Syntax

}
function drop($item, $quantity)
{
if ($this->item_list[$item] > $quantity)
$this->item_list[$item] -= $quantity;
else
$this->item list[$item] = 0;
}

}

This code defines the class shopping_cart with the members $item_list, pick(), and
drop (). Note that there’s no way to distinguish between public and private members.
In PHP, everything defaults to public—meaning that you can access all properties and
member functions of a class from the outside, without restrictions.

This simple example class implements some kind of shopping cart (as the name
suggests) with one variable containing the cart’s contents in an associative array
($item_list), and two functions (pick() and drop()) to add and remove items.
Member functions are declared just like regular functions except that they’re
implemented within the class definition. Class properties (variables inside classes) are
defined using the keyword var.

Note: It’s not possible to have separated class declarations and implementations in
PHP. You always have to implement all functions directly in the class declaration.

Accessing Objects

Member functions can be called by either using the “old” syntax of instance->member ()
or the “new” syntax instance: :member (). Similarly, properties are accessed using
instance->property or instance: :property.The latter form is especially useful to call a
parent’s constructor or for accessing other members not located in the current object
(more on that topic in the later section “Inheritance”):

class extended_cart extends shopping_cart

{
function extended_cart()
{
shopping_cart::shopping_cart("Mousepad", 1);
}

function query($item)
{

PHP and OOP

return($this->item_list[$item]);

}

This extended version of the extended_cart object has a constructor that calls the
parent’s constructor to correctly initialize the rest of the object tree. Note that without
explicitly calling the parent’s constructor from this constructor, the parent would never
be initialized. (Nor would its parent in turn, etc.)

PHP also features an alias pointing to the current instance of an object. This alias is
named this and gives access to all members of the actual instantiation. This is needed
for all self-references; PHP doesn’t introduce a new local scope within class definitions.

Note: Since PHP doesn’t introduce a new local scope within class definitions, make
sure that you’re including the keyword this everywhere that youre doing references
within your object. Forgetting to use this will instruct PHP to refer to the global
scope, which is very prone to bugs!

Constructors

Constructors are defined like regular functions as well, except that their names must
be equal to the class names. PHP knows no destructors. Constructors can take arguments
like any other function—even optional arguments (see the later section on variable
argument lists for more details about optional parameters).

Note: Since PHP 4.0, constructors can only take scalar values as parameters (strings,
integers, etc.), but no arrays or objects, which was still possible in PHP 3.0.

To add a constructor to the preceding example, we can add a little piece of code:

class shopping_cart

{

var $item_list;

function shopping cart($item = "T-Shirt", $quantity = 1)

{
$this->pick($item, $quantity);
}
function pick($item, $quantity)
{
$this->item_list[$item] += $quantity;
}

function drop($item, $quantity)

continues

49

50 Chapter 2 Advanced Syntax

{
if ($this->item_list[$item] > $quantity)
$this->item list[$item] -= $quantity;
else
$this->item_list[$item] = 0;
}

}

The constructor, contained in shopping_cart: :shopping_cart(), takes two optional
arguments—if no arguments are specified, upon instantiation the shopping cart will
“prefill” itself with one T-Shirt. Otherwise, it will take the wanted items:

$default_cart = new shopping_cart; /] this cart will fill itself with
=one T-Shirt by default
$mug_cart = new shopping_cart("Mug", 2); // this cart will contain two mugs
Inheritance

Adding functions to objects shouldn’t be done by rewriting old code but by
overloading existing structures instead. New objects can inherit from old objects by
using the keyword extends. As the name suggests, this will define a new class that
extends an existing one:

class extended_cart extends shopping_cart

{
function query($item)
{
return($this->item list[$item]);
}
}

This extended cart extended_cart now contains all properties and member functions
from shopping_cart with the addition of another function, query (), which allows us
to check the quantity of any given item in the cart.

Note: The class extended_cart doesn’t have its own constructor. If a child class
doesn’t have a constructor, PHP (since version 4.0) automatically calls the parent’s
constructor. However, by default PHP will never call a parent’s constructor. Thus, if
you need to set up your parent object, make sure that you call its constructor
manually.

Special OOP Functions

PHP and OOP

PHP features a few handy functions that make dealing with objects easier. The

following table describes these functions.

Function

string get_class(object object)

string get_parent_class
(object object)

bool method_exists
(object object, string method)
bool class_exists
(string classname)

bool is_subclass_of
(object object, string classname)

Description

Returns the name of the specified object
instance as a string.

Returns the name of the parent class of the
specified object instance as a string.

Tests whether the function named in method is
actually a member of object.

Tests whether classname is an existing defined

class.

Determines whether object is a subclass of
classname.

Note: These functions do not exist in PHP 3.0.

Shopping Cart Source Code

This section shows the full example of the OOP shopping cart implementation (see
Listing 2.1). This shopping cart is extremely simple, of course, but nevertheless useful.

Listing 2.1

Shopping cart source code.

class shopping_cart

{
var $item_list;

function shopping_cart($item =

"T-Shirt", $quantity = 1)

{
$this->pick($item, $quantity);
}
function pick($item, $quantity)
{
$this->item_list[$item] += $quantity;
}

function drop($item, $quantity)
{

continues

51

52 Chapter 2 Advanced Syntax

Listing 2.1 Continued

if ($this->item_list[$item] > $quantity)
$this->item_list[$item] -= $quantity;
else
$this->item_list[$item] = 0;

}
}
class extended_cart extends shopping_cart
{
function query($item)
{
return($this->item_list[$item]);
}
function get_contents()
{
return($this->item_list);
}
}

// you can instantiate shopping_cart the regular way
$cart = new shopping_cart;

// you can make use of the variable arguments of the constructor
$cart = new shopping_cart("Cap", 2);

// you can also use extended_cart, which in turn calls the
/| constructor of shopping_cart implicitly
$cart = new extended_cart;

// or you can use the inherited features of the constructor
$cart = new extended_cart("Cap", 2);

// of course, you can also use the inherited functions
$cart->pick("Mug", 1);

// ...or use any functions in the object itself
while(list($item, $quantity) = each($cart->get_contents()))
print("We have $quantity of $item");

Linked Lists

Linked Lists

Linked lists, a special form of trees, are one of the most typical data structures to
organize dynamic datasets. We're assuming that you already have an understanding of
the structure, concept, and usage of linked lists, so we won’t go deeply into their
implementation here; we’d rather concentrate on the elemental do’s and don’ts.

As described in the previous sections, PHP 3.0 creates copies of object instances
rather than referring to them by using a pointer. This only enables a very limited,
WORM-like use of linked lists: write once, read multiple. Linked lists can be created,
but not modified. When you try to modify an element in the list, you lose the
reference to all following elements in the list. Regrouping of elements is impossible for
the same reason.

Similarly, double-linked lists can’t be realized in PHP 3.0 (at least, we haven’t
managed it, and we spent quite a few hours in debugging sessions before finally giving
up). Because each node would need a new copy of the list tail to which it’s linking,
you would have to create a multitude of redundant lists with the same content just to
enable the “go back one element” feature.

PHP 4.0, supporting true references, doesn’t impose these limits. Lists can be
created and regrouped randomly—even double-linked lists. Note, however, that it’s
very tricky to distinguish between references and actual copies of list elements.

Beware of dangling pointers—so say programmers of “conventional” languages. We’d
like to modify this for PHP: Beware of redundant copies.

When working with lists, create a bulletproof library that handles all your needs
in the most general way. Test it intensively and make sure that it performs
correctly. This will prevent you from having to search for erroneous code
accessing your lists in incorrect ways and eventually destroying them.

Linked Lists and Trees—A Workaround

As mentioned earlier, it’s a good idea to create a bulletproof library for your needs—
one that’s easily extensible and features everything related to the required task. We’d
like to present a real-life example here: a library that we’ve developed to handle trees,
and that also works with PHP 3.0.You can find the complete source code on the
CD-ROM.

The library is able to handle double-linked trees with two children per leaf node,
each node having one content container for mixed variables. Every action that can be
performed with the tree has been incorporated into the API, detaching the tree design
from the code that accesses it.

This is exactly the reason why this tree works with PHP 3.0 (seemingly
contradicting what we said earlier). The tree is based on arrays and not on pointers;
because PHP features dynamic arrays, with a little bit of effort it’s very easy to use
such arrays to implement a dynamic tree.

53

54

Chapter 2 Advanced Syntax

The idea is not new. It has its origins many years ago and is not hard to understand.
Instead of carrying a pointer with each node that addresses another place in memory
to the next node, each node contains indices into the array to each node it’s linked to.
This also has the advantage that PHP is able to warn you of invalid indices, and you
can copy your whole tree by just assigning the variable that contains the tree array to
another variable. On top of that, you can serialize the whole tree and save it “as 1s” to
any place you want.

To give another, more theoretical explanation: Think of the memory that’s available
to your program as one big array. The size of the elements would probably be bytes, in
the case of physical RAM, but the size of each element doesn’t really matter. The
important thing is that a pointer is simply a number indexing one of these elements
and thus pointing out the beginning of each structure you're placing into your RAM.
Now, abstracting the whole thing into a language construct (a “real” array), you have
the same situation at a higher level: The PHP array now contains your “RAM,” and
each array element will represent one of the tree nodes. Pointers become indices into
this array, and referencing is done simply by retrieving the correct element from
the array.

Using arrays enables you to create a lot of “RAMs,” increasing and decreasing their
size, disposing of them as a whole or just a single element; overall, a very comfortable
method of memory management. Having all this integrated into a solid library gives
you a nice tool.

Figure 2.9 shows how the tree library internally handles the tree nodes in an array.

e] €

Figure 2.9 A tree contained in an array.

Linked Lists

The library consists of the following functions:

Function Description
array tree_create() Creates a new tree
int tree_allocate_node Allocates a new node in the tree

(array tree)

int tree_free_node Frees a node in the tree

(array tree, int handle)

int tree_link left Links a node as left child to another node
(array tree, int link_to, int child)

int tree_link_right Links a node as right child to another node
(array tree, int link_to, int child)

int tree_get_parent Returns the parent of the given node
(array tree, int handle)

int tree_get_left Returns the left child of the given node
(array tree, int handle)

int tree_get_right Returns the right child of the given node
(array tree, int handle)

int tree_assign_node_contents Assigns data to the content container of a node
(array tree, int handle, mixed

contents)

mixed tree_retrieve_node_contents Retrieves data from the content container
(array tree, int handle) of a node

Feel free to add more functions here; for example, the library doesn’t have
functionality to merge trees, detect dead leaves (leaves that exist in the array but are
detached from the main tree and thus cannot be accessed anymore), and so on. This
code is an excellent way to experiment and learn.

The library is pretty straightforward. tree_create() creates a new array for the tree
and initializes the first element as the root element. All references to other nodes are
integer indices within the array (see $idx_up, $idx_left, and $idx_right in the
source). -1 marks a reference as being used. For example, if one node doesn’t have a
left child node, $idx_left would contain -1.To mark an element itself as being in use
or not (meaning that it has data assigned to it), another flag is defined: $free. This
variable just contains 1 (in use) or @ (not in use).

tree_create() creates one dummy node, marks it as being free with all references
unused, and assigns it to slot @ in the tree array. Then it returns this array to the caller.
Note: The caller doesn’t have to know anything about this array—not even that it
actually is an array. The program should simply assume it to be some kind of “handle”
for the tree. As PHP doesn’t feature explicit types, this works very well.

55

56

Chapter 2 Advanced Syntax

tree_allocate_node() searches for a free node within the tree array by checking
the $free flag for each existing node. If none of the nodes is marked as being free, it
simply allocates a new one and adds it to the tree array. This is where PHP’s dynamic
structure comes in handy—if we had to use arrays of fixed sizes, we’d run out of
nodes sooner or later. The found node is then marked as being in use and returned as
a handle to the caller.

tree_free_node () does basically the opposite: It marks the specified node as being
unused by clearing the $free flag. This imposes three problems: First, freed nodes are
not really freed; they’re just marked as being free. Suppose you want to construct a
complex tree with lots of nodes and then run an optimizer over it, which generally
decreases the total node count by half and leaves lots of “ghost nodes” in the array
after the optimization run. Assume that you’d initially allocate 1,000 nodes and free
500 of them during optimization. This would result in an array consisting of 1,000
nodes, but just 500 of them marked as being used. This is quite a waste of memory, so
an automatic garbage collector would be a nice idea for these special cases.

Garbage collection leads to the second problem, namely zombie nodes. Zombie
nodes are nodes that are marked as being in use, but unlinked from the tree, unable to
be referenced anymore (see Figure 2.10).

D | €

Figure 2.10 Zombie nodes in a tree.

As the library knows about all nodes in the tree and their internal linking between
each other, zombie nodes can easily be identified—this is still missing in the code,
however.

The third problem is quite similar to zombie nodes: broken links. Broken links are
links that originate from one node and point to an unused/nonexistent node (see
Figure 2.11). Links “break” whenever you detach a node from the tree, marking it as
free, before having modified all other nodes that reference this node.

Linked Lists

/ \/- <€ - - - Broken link

<€--- Freed node

B C

Figure 2.11 Broken links in a tree.

Again, this can be overcome with strict checking in the library functions and the
garbage collector.

tree_link_left() and tree_link_right() link a node as left and right child,
respectively, by assigning the associated handle to the $idx_left and $idx_right
properties in the node structure.You can find their counterparts in tree_get_left()
and tree_get_right(), which read the handles of the left and right links, respectively,
from the node. Additionally, tree_get_parent() determines the parent node of a
subnode.

To store contents in the tree and retrieve data from it, you can use
tree_assign_node_contents() and tree_retrieve_node_contents().Again, PHP’
dynamic character is most helpful in this case, as we don’t need to fix our nodes to
certain datatypes. It became a common practice in C++ to instantiate trees using class
templates, which generated, for example, tree classes for integers (only). Even though
you could instantiate as many trees for as many datatypes as you liked, it wasn’t easy to
store dynamically typed content with this method. PHP simply accepts mixed types,
which, for example, allows you to suddenly change all nodes’ datatypes, and so forth.

Exercise: Implement Proper Garbage Collection into the Tree Library
Hint: You can introduce a new flag into the node structure for reference counting; this makes automatic
garbage collection easier and faster.

Don't underestimate exercises. Knowing how to do something is substantially different from being able to
do something. We highly encourage you to at least try to improve the library. It's definitely not a waste
of time, even if you don't succeed. Marie Freifrau von Ebner-Eschenbach: "Fiir das Kénnen gibt es nur
einen Beweis: das Tun." (Freely translated: “There's only one way to prove ability: doing it.")

57

58 Chapter 2 Advanced Syntax

Listing 2.2 shows the full implementation of the tree library:

Listing 2.2 The tree library implementation.

/1l
// This structure keeps a tree node
/1
class tree_node
{
/] array indices linking to neighboring nodes
var $idx_up;
var $idx_left;
var $idx_right;

var $free;

/] contents of this node, this is a mixed variable
var $contents;

}

function tree_create()

{

/| create a new, empty array
$return_array = array();

/| allocate the root node
$root_node = new tree_node;

// all other linking indices are invalid
$root_node->idx_up = -1;
$root_node->idx_left = -1;
$root_node->idx_right = -1;

/| this node is unused
$root_node->free = 1;

/1 create dummy contents
$root_node->contents = "";

/| assign root element to array
$return_array[0] = $root_node;

/] return it back to caller
return($return_array);

}

function tree_allocate_node(&$tree_array)

{

Linked Lists 59

/] find a free node
for($i = 0; $i < count($tree_array); $i++)

{
/| retrieve node from array
$node = $tree_array[$i];
// is it in use?
if($node->free)
{
/] no, it is not in use, allocate it
$node->free = 0;
/] assign node back to array to update the tree
$tree_array[$i] = $node;
// now return this node's index as handle
return($i);
}
}

// we haven't found a free node, so allocate a new one
$node = new tree_node;

// invalidate all indices
$node->idx_up = -1;
$node->idx_left = -1;
$node->idx_right = -1;

// this node is NOT free
$node->free = 0;

// assign dummy contents
$node->contents = "";

/] now add this node to the tree array
$tree_array[] = $node;

// return new index as handle
return(count($tree_array) - 1);

}

function tree_free_node(&$tree_array, $handle)

{

/] retrieve node from tree
$node = $tree_array[$handle];

/] check if it is really allocated
if ($node->free)
/] this node is free, return an error code

continues

60 Chapter 2 Advanced Syntax

Listing 2.2 Continued

// note that this only serves diagnostic

/| purposes since it wouldn't hurt the tree
/] if we'd just mark it as free

return(-1);

$node->free = 1;

/| assign node back to tree
$tree_array[$handle] = $node;

return(1);
}
function tree_link left(&$tree_array, $link to, $child)
{
/] retrieve nodes
$link_node = $tree_array[$link_to];
$child_node = $tree_array[$child];
/| check if nodes are allocated
if ($1link_node->free || $child_node->free)
/] return error, we do not allow linkage
/] of free nodes
return(-1);
/] link nodes together
$link_node->idx_left = $child;
$child node->idx_up = $link_to;
/] write nodes back into the array
$tree_array[$link_to] = $link_node;
$tree_array[$child] = $child node;
// return success
return(1);
}

function tree_link_right(&$tree_array, $link_to, $child)
{

/| retrieve nodes
$1link_node = $tree_array[$link_to];
$child _node = $tree_array[$child];

/] check if nodes are allocated
if ($link_node->free |, $child_node->free)

}

Linked Lists

/] return error, we do not allow linkage
/| of free nodes
return(-1);

// link nodes together
$link_node->idx_right = $child;
$child_node->idx_up = $link_to;

// write nodes back into the array
$tree_array[$link_to] = $link_node;
$tree_array[$child] = $child_node;

/] return success
return(1);

function tree_get_parent(&$tree_array, $handle)

{

}

// retrieve node from array
$node = $tree_array[$handle];

// check if node is actually allocated

if ($node->free)
// node is not allocated, return error
return(-1);

/] node is allocated, return its parent
return($node->up);

function tree_get_left(&$tree_array, $handle)

{

}

/| retrieve node from array
$node = $tree_array[$handle];

/| check if node is actually allocated

if ($node->free)
// node is not allocated, return error
return(-1);

// node is allocated, return its left child
return($node->left);

function tree_get_right(&$tree_array, $handle)

{

continues

61

62 Chapter 2 Advanced Syntax

Listing 2.2 Continued

/] retrieve node from array
$node = $tree_array[$handle];

/] check if node is actually allocated

if ($node->free)
// node is not allocated, return error
return(-1);

// node is allocated, return its left child
return($node->right);

}

function tree_assign_node_contents(&$tree_array, $handle, $contents)

{

/] retrieve node from array
$node = $tree_array[$handle];

/] check if node is actually allocated

if ($node->free)
/] node is not allocated, return error
return(-1);

// assign contents to node
$node->contents = $contents;

// assign node back into array
$tree_array[$handle] = $node;

/] return success
return(1);

}

function tree_retrieve _node_contents(&$tree_array, $handle)

{

/] retrieve node from array
$node = $tree_array[$handle];

/] check if node is actually allocated
if($node->free)
// node is not allocated, return error
return(-1);

/] return contents of this node
return($node->contents);

Associative Arrays

Associative Arrays

Arrays are another basic structure in programming languages. Arrays provide means for
storing a fixed set (or collection) of the same datatype in a convenient way, making each
element of your set indexable by using a unique key.

In the typical “conventional” programming languages, arrays are handled like this:

int my_integer_array[256]; /] allocate 256 integers in this array

This C code snippet declares an array called my_integer_array, containing 256
integers. You can address each of these integers by indexing the array with an ordinal
value, for this array in a range from 0 to 255. (C starts counting from 0; the given
number in the array definition specifies the number of integers you want to have
available.) Indexing looks like this:

int my_integer = my_integer_array[4];

This retrieves the fifth element (remember, C starts counting from 0) from the array
and stores it in my_integer.

Due to the nature of compiled languages, you were always bound to the previous
definition of your variables. If you suddenly needed more than 256 integers in the
array above, this was impossible. Of course, you could have defined this variable as a
pointer to an integer array and allocated 257 elements for it—but what if you
suddenly needed another element? You’d have to allocate new space, copy the old
array contents, and free up the old, unused space.

PHP takes a different approach. Because PHP knows no typical variable
declarations (only type definitions), new variables are allocated on the fly. Whenever
you create a new variable by introducing its name into the namespace, you simply
create storage space bound to this name—nothing more. The kind of data residing in
this space is not restricted to a certain variable type. It can be reinterpreted on the fly,
and of course resized, reallocated, whatever.

Take a look at this:

$my_var = 1;
$my_var = "Used to be an integer";
$my_var = array("Oh well, I like arrays better");

The first line creates a new variable $my_var. PHP will find that an integer is going
to be assigned to it; thus it sets the initial type of $my_var to integer. The second

line, however, overwrites the contents of $my_var with a string. Using one of the
conventional programming languages, this would have resulted in an error at compile
time, or at least an exception during runtime. But PHP dynamically changes the type
of $my_var to String and reallocates the variable so that enough storage space for the
string is available. The third line then changes the type of $my_var once more by
creating an array out of it. PHP handles all cases transparently without complaining.
(We know that other languages out there exist without strict variable types, but we
won't classify these as “conventional” languages here.)

63

64

Chapter 2 Advanced Syntax

Note: PHP 3.0 doesn’t have proper garbage collection. When reallocating a variable,
memory that’s already allocated is not always being reused. In long-term scripts (or
scripts doing heavy processing), this might result in big chunks of “dead memory.”
When using memory-intensive scripts that run for a long time, monitor their memory
usage in a testing environment before releasing them to a production environment, to
make sure that your server won'’t get blown away. PHP 4.0 is not vulnerable to this
problem.

Because formal variable declarations are not needed in PHP, variable usage is
completely dynamic. A special case in PHP’ dynamic variable handling is arrays. You
probably know the common array type, the indexed array. Indexed arrays are arrays that
are indexed by ordinal numbers. These ordinal indices typically range from 0 to n, n
being the highest possible index. Languages such as Pascal allow indexing with
different ranges such as from 3 to 18; however, these ranges are transformed back to
0-based indexes at runtime. The key feature of these ordinally indexed arrays is that
you can compute another index from any given base index. For example, suppose you
want to read out three consecutive array elements, starting from index 2:

$base_index = 2;

for($i = $base_index; $i < $base_index + 3; $it++)
print("Element $i is $my_array[$i]
");
In every iteration of the for() statement, this little snippet computes the next index
into the array by incrementing $i.

Associative arrays don’t have this feature. The special thing about associative arrays is
that they can be indexed with non-ordinal keys, such as strings, for example. Every
string used as an index has a value associated to it, thus the name associative arrays. As
you can imagine, giving a string as base index doesn’t allow guessing the next valid
index in the array. Thus, associative arrays can’t be used to order data elements in an
ordinal way.You have to know the array keys to retrieve their associated values.

Apart from that, the functions list() and each(), discussed earlier, can be used to
traverse associative arrays.

Indexed arrays are just a special form of associative arrays in PHP. Doing an
unset() on one of the elements in an indexed array will leave all other elements (and
their ordering) intact, but produce a nonconsecutive array. See the earlier descriptions
of list() and each() for details.

Multidimensional Arrays

As the name suggests, multidimensional arrays are arrays with more than just one
dimension. One-dimensional (or single-dimensional) arrays are the form in which
arrays are mostly seen:

$my_array[0] = 1;

$my_array[1] = 777;

$my_array[2] = 45;

Associative Arrays

To index this type of array, you only need one index, which limits the number of
possible values to the range of this index. But it’s often very useful to create
multidimensional arrays when handling complex datasets. Typical examples include
bitmaps and screen buffers. When you look at your monitor, you see (at least these
days) a two-dimensional projection of your desktop. The windows, bitmaps, command
lines, cursors, pointers—everything is 2D.To represent this data in a convenient way,
you could of course serialize everything into arrays with a single dimension—but the
more appropriate method is to use arrays with dimensions equal to those of the input
data. For example, in order to store a bitmap (a set of pixels) for a mouse pointer, you
just add another index to your array:

// clear mouse bitmap
for($x = 0; $x < MOUSE_X_SIZE; $x++)
for($y = 0; $y < MOUSE_Y SIZE; $y++)
$mouse_bitmap[$x][$y] = 0;

This would clear a mouse bitmap, setting all elements to 0—using two loops, one for
each dimension. Figure 2.12 shows a graphical representation of two-dimensional data
with the data elements residing in a coordinate system. Internally, in memory, the data
elements will of course be stored serialized (RAM only has one dimension in
indexing); however, a coordinate system is the proper visualization analogy.

X A

5

4 fremmmeeeees O é;:ﬁﬁ; $array[4][3])

2 vt ------ O é;i'eﬁt:af%rraym [5]
1

0 >

1 2 3 4 5 6 7 8 Y

Figure 2.12 A two-dimensional array structure.

Arrays don’t have a limit on the number of maximal dimensions (frankly, we haven’t
tried yet—>but there will hardly be any use for arrays with 16 dimensions or more).
Dimensions can also have different types (first dimension associative, second dimension
indexed by integers, third dimension associative again, and so on). Thus, theyre also
very useful for representing statistical data, for example.

65

66 Chapter 2 Advanced Syntax

Variable Arguments

When using functions, it’s often necessary to return more than one value or change
the given parameters. For example, fsockopen() returns the socket handle as a return
value, but is also able to return an error code along with descriptive text for eventual
errors:

/] try to open a socket for HTTP with a 30 second timeout

$socket_handle = fsockopen("www.myhost.com", 80, $error_nr, $error_txt, 30);

if (!$socket_handle)

{ print("Couldn't connect to HTTP host.
");

print("Error code: $error_nr, Reason: $error_txt
");

}
If a connection to the desired host could not be established, this code prints an error
code and an error reason. The variables for these were originally being passed to
fsockopen() as parameters. However, as these parameters are declared as “passed by
reference” in the fsockopen() declaration, fsockopen() is able to modify them and
make these changes globally available after it returns.

Usually functions don’t access their parameters by reference. When they modify
their values during execution, they work with a local copy of the original value:

function calculate($a, $b, $c)

{
$a = $b + $c;
}
$i = 1;
$j = 2;
$k = 3;

print("I $i, J $j, K $k
");

calculate($i, $j, $k);

print("I $i, J $j, K $k
");
Both print statements output the same content. While calculate() modifies $a during
execution, the contents of $i will not be changed, although it has been passed as an
argument for parameter $a. This is because calculate() is working with a copy of the
original variable, not the variable itself. Thus, as soon as the function returns, the copy
of the variable it was working with is discarded and its contents are lost.

As is the case with fsockopen(), it might sometimes be desirable to keep changes
to a parameter and make them visible in the global scope. In order to do this, a
variable must not be passed as a copy, but by reference. Passing variables by reference

Associative Arrays

results in the function only getting a pointer to the memory block where the original
variable resides. Using this pointer, the function can access the global instance of the
variable and change it directly:

function calculate(&$a, $b, $c)

{
$a = $b + $c;
I3
$i = 1;
8j = 2;
8k = 3;

print("I $i, J $j, K $k
");

calculate($i, $j, $k);

print("I $i, J $j, K $k
");

As you can see here, only one character is different—the ampersand (&) was missing in
the previous snippet. This character, when put in front of a function parameter,
denotes it to be passed by reference.

Note: You don’t have to change the line that calls the function to include an
ampersand (&). PHP automatically converts your parameters to references when it finds
a function that wants them passed this way.

So, as calculate() changes $a, it’s not changing its local copy of $i, but accessing
$i’s global storage space, modifying it directly. Moreover, as it’s not working with local
memory, the changes to $1i are not lost when the function returns.

Passing parameters by reference is often a very useful method to return more than
one value from a function or to “magically”” change your variables when using
multiple function calls to do complex calculations in a row. However, you should avoid
splitting structures and pressing them into parameter lists when you could also return
the data in a structure directly. Try not to overuse these kinds of parameters. Never
make this your daily tool—it’s actually a very dirty practice (functions are not
supposed to modify their parameters in the global scope—sometimes evil bugs occur
due to this), but often helps to ease things and just allow you to do clever tricks.

A possible example is the “automatic” update of so-called “run variables.” Run
variables are variables that change their values during an algorithmic loop. (Counter
variables in for() statements are a special case of these.) A concrete example that
benefits from this is the Run Length Encoding (RLE) algorithm, which is widely
known because it has been used (and still is used) in such formats as ZSoft’s PCX
picture format.

67

68

Chapter 2 Advanced Syntax

The RLE algorithm is a simple compression algorithm that benefits from the fact
that a lot of low-color images store the same data bytes repetitively (especially bitmaps
that have only two colors, black and white). Take a look at this representation of a
simple cube:

1111111111111

1000000000 001

100000000000 1
)

1000000000 001

100000000000 1
)

1111111111111

With a bit of imagination, you can see a cube of 0s with a border of 1s. If you would
write this to a file “as is,” you would need 20 X 10 = 200 elements (20 columns by 10
rows). We're assuming here that one element equals at least one byte, disregarding the
fact that a simple compression could already be done by packing the information
into bits.

You can see, however, that storing the data as is doesn’t make sense. If you would
dictate the data to someone else to write it down, you wouldn’t read it “one one one
one one one one [...] one zero zero zero zero zero [...] zero one one one [...],” but
would tell the writer “twenty ones, another one, eighteen zeros, |...].”

The same approach is taken by the RLE algorithm, which counts the number
of consecutive elements not changing their value and then stores them using a
“count/value” pair. After compression, the data above might look like this:

21, 1, 18, 0, 2, 1, 18, 0, [...], 18, 0, 21, 1

The first element is always the counter, the second element the data element. To
decompress this, you simply need to read the counter and then output the following
data element as often as the counter indicates. As you can see, this “trick” reduced the
number of required elements from 200 to 34.

The problem with this algorithm is that when it encounters a lot of different
elements in a row, it creates a bigger output data than the original input data, because
storing a lot of elements with a data count of 1 quickly renders the algorithm
ineffective.

To overcome this, a little quirk can be added, namely a “counter threshold.”

Each type of data has a typical range of counters; in the data above, for example, the
counter never exceeded 21. In fact, the values used most often were 18 and 2. Thus, by
restricting the counter to a range of 1-31, we're able to place “literal data” that doesn’t
need compression into the input stream—the compressor simply spits out all input
data elements greater than 31 without a count in front of them. The result is that the
algorithm is now 100% optimal for all input values larger than 31. All values less than
or equal to 31 will still be compressed non-optimally, but this can be ignored.

Associative Arrays

To decode the data, it’s now crucial to distinguish between literal data elements and
compressed data elements, as shown in Listings 2.3, 2.4, and 2.5. This is where variable

arguments are most handy.

Listing 2.3 The RLE compressor.

function encode_data()

{

// do initial setup on our variables
$current_count = 0;

$status = read_from_input($current_byte);
$old_byte = $current_byte;

$output = array();

// as long as there's input data, loop
while($status)
{

/] check if the current byte matches the last one
if ($old_byte == $current_byte)

{
/] there's a match, increase counter
$current_count++;
/| does the counter exceed the threshold?
if ($current_count == COUNTER_THRESHOLD)
{
/] it does, flush cache and restart
$output[] = chr($current_count);
$Soutput[] = $current_byte;
$current_counter = 0;
}
}
else
{

/] bytes don't match

// do we have a cached pair?
if ($current_count > 1)

{

/] yes we do, write it

$output[] = chr($current_count);
$output[] = $old_byte;

$current_count = 1;

}

else

{

// we don't have a cached pair,
// write literal

continues

69

70 Chapter 2 Advanced Syntax

Listing 2.3 Continued

if (ord($old_byte) < COUNTER_THRESHOLD)

{
/] this byte could be mistaken as a counter
/] value, so write a dummy pair
$output[] = chr(1);
$output[] = $old_byte;
}
else
{
// can't be mistaken as counter value, just
// write the value directly
$output[] = $old_byte;
}
}

}

/| set current byte as old byte
$old_byte = $current_byte;

/] get new byte and loop
$status = read_from_input($current_byte);

}

return($output);

Listing 2.4 The RLE decompressor.

function get_encoded pair(&$count, &$value)

{

// check input stream
if(!read_from_input($data_element))

{
/] no input data available, return
/] zero count and dummy data
$count = 0;
/] indicate failure
return(0);

}

/] test if this is literal data
if(ord($data_element) >= COUNTER_THRESHOLD)
{

// this is literal data, return

// count of one and data element

Associative Arrays 71

$count = 1;
$value = $data_element;

}

else

{

// this has been a count, assign it
$count = ord($data_element);

/] try to retrieve the data element
/] itself
if (!read_from_input($value))

{

// input data is corrupted,
// return zero count
$count = 0;

// indicate failure
return(0);

}

/] return success
return(1);

}

function decode_data()

{

/| initialize output array
$output = array();

/| decompress all data into the array
while(get_encoded_pair(&$count, &$value))

{
for($i = 0; $i < $count; $it++)
$Soutput[] = $value;
}
return($output);

72

Chapter 2 Advanced Syntax

Listing 2.5 Usage example for the RLE engine.

/]

/] this declaration must exist and be equal
// both for the compressor and decompressor
/]

define("COUNTER_THRESHOLD", 32);

/]

/] this tool function is needed for both the

// compressor and decompressor to read data

/1l

function read_from_input(&$data_element)

{
/] This is a dummy function to retrieve a data element
/] from the input data. It could contain code to read
/] from an array, from the standard input, or something
/| completely different.
/] As an example, this function reads from a global
/] file. (Not a good idea to have global files but
/] just for the example's sake.)
global $file_handle;

/] check if we have reached the end of the file
if (feof ($file_handle))
{

// we did, return error

return(0);

}

// we did not encounter the end of the file,
/] so read next element
$data_element = fgetc($file_handle);

/] return success
return(1);

}

// include compressor and decompressor
include("compressor.php3");
include("decompressor.php3");

/| define filenames

$original_file = "data.original";
$compressed_file = "data.compressed";
$decompressed_file = "data.decompressed";

/| -> all procedures need the global variable $file_handle
/] (bad practice but best for a simple example)

/| open input file

$file_handle = fopen($original_file, "r");

if(!$file_handle)
die("Error opening file.");

// encode it
$output = encode_data();

/| close input file
fclose($file_handle);

// open output file

$file_handle = fopen($compressed_file, "w"

if (!$file_handle)
die("Error creating file.");

// write decoded data
for($i = 0; $i < count($output); $i++)
fputs($file_handle, $output[$i]);

// close output file
fclose($file_handle);

// open input file
$file_handle = fopen($compressed file,
if (!$file_handle)

die("Error opening file.");

/] decode it
$output = decode_data();

/] close input file
fclose($file_handle);

/] open output file
$file_handle = fopen($decompressed_file,
if (!$file_handle)

die("Error creating file.");

/] write decoded data
for($i = 0; $i < count($output); $i++)
fputs($file_handle, $output[$i]);

/] close file
fclose($file_handle);

)3

s

W)

Associative Arrays

This example shows very nicely how the decoder and reader logic can be split into

smaller, separate functions. The actual decoder is now only a few lines long. The
function that supplies input data can be detached from the rest of the code and the
“decision maker” that differentiates between literal and compressed data is again in a

separate, small, easy-to-understand function.

73

74

Chapter 2 Advanced Syntax

A clever trick is to return literal data with a count of 1, so that the decompression
loop doesn’t have to worry about this again—it can simply write the data it’s being
supplied with to the output array.

The error checking could be improved some, but we're leaving this up to the
reader. It’s not hard to do.

Variable Argument Lists

Variable argument lists, also often called optional parameters, allow you to pre-assign
function parameters with a default value. If the caller doesn’t specify a value for the
argument, the default value is assumed. This makes it possible to supply the caller with
a list of optional parameters that can be used but don’t have to be used.

Optional parameters are defined as follows:

function open_http_connection($hostname, $port = 80, $timeout = 10)

{

$socket = fsockopen($hostname, $port, $timeout);
/* rest of the code goes here */

return($socket);

}

$regular_socket = open_http_connection("www.myhost.com");

$slow_socket = open_http_connection("www.myhost.com", 80, 20);

$test_socket = open_http_connection("testserver.myhost.com", 8080);

$slow_test_socket = open_http_connection("testserver.myhost.com", 8080, 20);
The function open_http_connection() accepts one regular argument named
$hostname that specifies the name of the host to which the function is supposed to
connect. Additionally, it has two optional arguments, $port and $timeout, containing
the port number to connect to and the connection timeout in seconds, respectively.

These two have pre-assigned, default values, indicated by the equal sign (=) followed
by the wanted default value. Thus, whenever these arguments are not given by the
caller, PHP just replaces the missing fields with their default values.

As you can see in the call examples, the very first call only uses $hostname. $port
and $timeout are missing, so PHP just fills in the default values, which makes the call
equal to this:

$regular_socket = open_http_connection("www.myhost.com", 80, 10);

In turn, you can still specify the optional parameters and overwrite their defaults, as
seen in the second call. The value for $port is still 80, but $timeout is now set at 20
seconds.

You need to supply the default arguments whose value you'd like to change, as
demonstrated by the third example. Here, only $port is given as 8080. $timeout is not
given and thus remains at its default value of 10 seconds.

Associative Arrays

The fact that PHP can’t guess which value belongs to which parameter requires
you to put all optional parameters at the end of the argument lists. If you'd put
$hostname as the only required parameter at the end of the list (and $port and
$timeout in front of it), the first call that only specified $hostname would make PHP
think that the string for the hostname would actually be the value for $port, and thus
create a lot of confusion.

Also, you can't just pick a random set of optional parameters for which you’d like
to supply values—if you have a function that accepts three optional parameters and
you only want to change the last one in the argument list, you still have to supply the
default values for the other two parameters. (Shown in the second call above as well,
where only $timeout is changed.)

In PHP 4.0, real variable arguments are possible. A function can take more
arguments than the function definition lists, and you can access any number of
arguments with the functions func_get_args(), func_num_args(), and
func_get_arg().

The return value of func_get_args() is an indexed array that’s filled with all
argument values passed to the function, from left to right:

function show_arguments()

{
$argument_array = func_get_args();
for($i=0; $i<count($argument_array); $i++)
{ print("$i => $argument_array[$il
");
}

}

show_arguments("Leftmost", "Middle", "Rightmost");

The func_num_args() function returns the number of passed arguments;
func_get_arg() returns a specific argument. For example, func_get_arg(0) would
return the first argument.

Variable Variable Names

Variable variable names. For those who don’t know about it (and for us, when we
heard it the first time)—weird! Variable variable names are about accessing variables
whose names you don’t know beforehand and construct during runtime. This feature
is possible in PHP because of its interpreted nature. PHP just walks through the code
and translates whatever it finds to something useful. The following code constitutes the
simplest example for variable variable names:

<?
$my_var = "hello";

continues

75

76

Chapter 2 Advanced Syntax

$$my var = 1;
>

In the second line, $my_var is prefixed with $$. Basically, this is how variable variable
names work. Of course, you could nest variable variable names to get variable variable
variable names (and so on), but with variable variable names you can already do pretty
neat tricks.

A real-life example: phpPolls, the voting booth software described in Chapter 1,
“Development Concepts,” makes use of variable variable names. To protect itself from
users voting twice in the same poll, one of the protection mechanisms is based on
cookies. Whenever a user votes, a cookie is set, named with a configurable prefix and a
unique ID identifying the poll. As cookies are reintroduced into the global namespace,
whenever a user tries to submit a vote, phpPolls checks for the existence of a global
variable named like the cookie name it constructed before. If a variable with this name
exists, phpPolls rejects the vote.

To perform this task, variable variable names are extremely handy. Following is an
excerpt from the phpPolls source code:

$poll object = mysql_fetch_object($poll_result);

$poll_timeStamp = $poll_object->timeStamp;

$poll_cookieName = $poll_cookiePrefix.$poll_timeStamp;

/] check if cookie exists
if (isset($$poll_cookieName))

{
/| cookie exists, invalidate this vote
$poll votevalid = 0;
}
else
{
/] cookie does not exist yet, set one now
setCookie("$poll_cookieName", "1", $poll cookieExpiration);
}

The code first retrieves the unique ID for the cookie, which consists of the poll’s
timestamp, and then assembles this with the cookie prefix $poll_cookiePrefix to
form the name of the wanted variable, $poll_cookieName. Using isset(), the
existence of the variable (and thus the cookie) is determined and acted on accordingly.

Associative Arrays

Variable Function Names

Of course, what we said about variable variable names in the preceding section is also
valid for function names. Function names can be constructed using variables, providing
a dynamic way of processing data, installing modifiable callbacks, and the like. Instead
of hardcoding function names, you can use string variables to specify the functions
you want to call:

function my_func($a, $b)
{

print("$a, $b");
}
$function = "my_func";

$function(1, 2);

After the declaration of my_func(), the variable $function is assigned a string
"my_func". Since this string is the same as the name of the function you want to call,
you can use it when calling my_func().

Of course, this is a very simple example of variable function names. They’re very
useful when you have to switch between a set of different functions, depending on a
number of variable flags.

Suppose you want to decode email attachments. These can have different formats—
to name just two, base64 and uuencoded. Creating a “closed” parser that only under-
stands one or two encoding formats and can hardly be extended is not a good idea; as
soon as new formats are demanded, you’ll be stuck. This case is almost ideal for
variable function names:

function decode_base64($encoded_data)

{
// do something with the encoded data
return($decoded_data);
}
function decode_uuencoded($encoded_data)
{
// do something with the encoded data
return($decoded_data);
}

continues

77

78

Chapter 2 Advanced Syntax

$mail text = fetch_mail();
$encoder_type = determine_encoding($mail_text); // returns: "base64" for Base64
// returns: "uuencoded" for
=UUEncoded

$decoder = "decode_".$encoder_type;

$decoded_data = $decoder($mail_text);

This code automatically determines the correct handler for the input data.
determine_encoding() returns a string indicating the type of data to be decoded, for
each of which a corresponding function must exist. The name of the function to be
called is then written into $decoder and called right away.

The drawback of this method is that it’s dirty. You can hardly see a “default”
behavior in it—the decoding mechanism is completely dynamic and might crash if
determine_encoding() produces a meaningless result. However, it’s a very comfortable
way to deal with the input data. As soon as new encoding types appear, you only have
to create an appropriately named function and adjust determine_encoding() to return
the corresponding string.

As long as you make determine_encoding() bulletproof, meaning that it will always
return a meaningful string (even if it’s only a dummy), we would say that this
technique is totally legal to use. As long as you can make sure that your script will
remain in a defined state throughout runtime, this way of dynamic data handling is fit
for production environments.

A real-life example of a script that makes extensive use of variable function names
is phpIR C (discussed in the following chapter). phpIRC is an IR C layer for PHP,
providing access to IRC (Internet Relay Chat) networks through a comfortable API.
As the handling of input data is nonlinear and completely user-dependable, phpIRC
knows a set of events classifying each incoming packet. The user can install handlers
into phpIRC for each event, to be able to react on each type of incoming traffic.
phpIR C stores the names of the callback functions in an internal array; as soon as data
arrives, it scans its callback array for functions matching the detected type of data,
calling all matching functions in a row. This allows for dynamic data processing similar
to the email example described earlier, and is very handy when you can (or want to)
decide how to deal with upcoming events only at runtime.

Taking this further, you can use variable function names to change the behavior of
your scripts at runtime and also install user-defined “plug-ins” that attach themselves
to the code at runtime, making additional functionality available to the script without
having to change a single line of code.

Polymorphism and Self-Modifying Code

The drawbacks of variable function names (and partially variable variable names) is
that you always have to have a “fixed” part of the program (in the case of variable

function names, a list of previously declared functions that you can use) and then a
“variable” part (the part that constructs the function names into a variable and then

Polymorphism and Self-Modifying Code

calls the function whose name has been constructed). This implies that for every
possible constructed name, you have to create a function beforehand in order to let
the program operate correctly—kind of restricting.

This can be overcome by completely dynamic programs—programs that generate
themselves on the fly. Originally, this was an idea from the “early” days of
programming, partially invented by game programmers and virus writers.

It all started with self-modifying code. In the inner loops of games—for example,
the procedures that were responsible for drawing a buffer to the screen—speed was
(still is) very crucial. However, as processing time was not an infinite resource, people
had to think of new ways of getting the most out of their equipment.

Often it was the case that, in this innermost loop, quite a few decisions had to take
place. For example, if a buffer copy routine only had to copy every second line to the
screen on some occasions, you would have a few if()/then constructs embedded into
the part of the code that needed them the least. These constructs took away precious
processing time, and since this innermost routine was taking something like 80% of
the total processing time of the overall program, speeding it up by 50% by removing
these constructs would result in 40% additional available computing power.

Creating a set of routines to handle each case wouldn’t have helped much,
however; you would have wasted code space and just moved the decisions elsewhere.
Of course, eventually you could have gotten a better overall performance, but not the
optimal performance.

Thus, the technique of self~-modifying code was invented. Whenever a part of
the program would modify one of the conditions of the innermost if()/then
constructs, instead of adjusting the responsible flags accordingly, it just reprogrammed
the inner loop in such a way that it would act as desired; that is, exactly as it would if
it would evaluate the flags. The necessary modifications were often only a matter of
changing one or two bytes, and no more expensive than setting a set of flags.

This would only work on the machine code level, of course, and was extremely
system-dependent—but it was also extremely powerful.

Virus programmers finally took this technique to the extreme by creating
polymorphic programs. Polymorphic programs are called polymorphic because they
change their own code while still performing the same task. The simplest method to
create polymorphic code was to compress the viruses and choose a different
compression algorithm or different compression parameters every time. This resulted
in different bytecode after every compression, but after decompression the original
program was restored. (Try looking at ZIP archives containing the same data with
different compression levels—they look substantially different, but always expand back
to the same data.) The more complicated method was to dynamically regroup
instruction blocks while keeping the algorithmic structure intact—a method that
sometimes required extremely sophisticated code, but that was also very effective. As
every method resulted in a change of the bytecode, different signatures for each
infection of the virus were created, making it almost impossible for antivirus
software to detect them—while the viruses were able to happily infect every program
they found.

79

80

Chapter 2 Advanced Syntax

How does this relate to PHP? Of course, you can'’t create polymorphic programs
like this—PHP’s architecture prevents runtime modifications of code that has already
been parsed—but nevertheless there’s useful stuft in it. One possibility: dynamic
function parsers, as described in the next section.

Dynamic Function Generator

While we were writing this book, someone in the German PHP mailing list was
asking for a way to handle the processing of mathematical functions that were
entered by a user. He wanted to know how he could display a function graphically
that was entered by a user using a Web formula with PHP, but he didn’t know
how to deal with the textual input: How could you turn something looking like
f(x) = m * x + binto a graph?

The discussion quickly moved into one of the traditional paths; everyone started
thinking big, really big, instead of seeing the simple, obvious things. Uni sono (Latin,
“with one voice”), the common method to approach the problem seemed to be the
following;:

1. Analyze input data.
2. Create a parsed representation (something related to compiler techniques).
3. Let a processor run over the parsed representation and generate step-by-step
numerical output data.
Our concrete example, f(x) = m * x + b, would look like this:
1. See that this is a function depending on x, where m and b are variables.

2. Create a structure to internally represent the function text for easier handling;
for example, make a tree of variable bindings to the multiplication sign (*) and
plus sign (+).

3. Let a function vary x (which we found to be the variable this function depends
on) and store output data for y, then interpolate.

This is the de facto approach taught in universities, seen in complex example sources,
and so on. Nobody seemed to be able to make himself free of this pre-thought
solution and create a more innovative solution. Ever thought about what PHP does
when it interprets your scripts?

1. Analyze input source.

2. Generate a parsed representation.

3. Let a processor run over the parsed representation.
Alright, this is very simplified, but basically what we need. So why not transform the
input function into valid PHP code and let PHP do the work for us? PHP supports

dynamic coding, as you’ve seen elsewhere in this chapter, so the whole task could turn
into something very trivial.

Polymorphism and Self-Modifying Code

Indeed, the regular expressions required to transform a simple math function into
PHP code are extremely easy. Assuming that all variables consist of a single character
and that only legal PHP math operators are used (+, -, *, etc.), the following line can

do the job:
$php_code = ereg_replace("([a-zA-Z])", "$\\1", $input_function);

This line transforms m * x + b into $m * $x + $b. Building a little bit of code
around this regular expression and making a few simplifying assumptions, we can
construct a dynamic function plotter very quickly, as shown in Listing 2.6.

Listing 2.6 Dynamic function parser and plotter.

/1l
// define global constants
/1l
define("PLOT_MIN", 0.1);
define("PLOT_MAX", 100);
define("PLOT_STEP", 0.5);
(
(

define("DIAGRAM_HEIGHT", 300);
define("DIAGRAM_HORIZON", 150);

function parse_function($in_string)

{
/| define a custom function header
$header = "";
$header = $header."function calculate(\$req_code, \$x)\n";
$header = $header."{\n";
$header = $header."eval(\$req_code);\n";
/| define a custom function footer
$footer = "\n}\n";
/| convert all characters to PHP variables
$out_string = ereg_replace("([a-zA-Z])", "$\\1", $in_string);
/| prepend header, create equation, and append footer
$out_string = $header."return(".$out_string.");\n".$footer;
/] return result
return($out_string);

}

function create_image()

{
/] export this variable
global $color_plot;

// we calculate the X scale based on the plot parameters

continues

81

82 Chapter 2 Advanced Syntax

Listing 2.6 Continued

/] the diagram height is fixed as we do not check for the
/] function's extreme points

$width = PLOT_MAX / PLOT_STEP;

$height = DIAGRAM_HEIGHT;

$image = imagecreate($width, $height);

// allocate colors

$color_backgr = imagecolorallocate($image, 255, 255, 255);
$color_grid = imagecolorallocate($image, 0, 0, 0);
$color_plot = imagecolorallocate($image, 255, 0, 0);

/] clear image
imagefilledrectangle($image, 0, 0, $width - 1, $height - 1, $color_backgr);

/] draw axes

imageline($image, 0, 0, 0, $height - 1, $color_grid);
imageline($image, @, DIAGRAM HORIZON, $width - 1, DIAGRAM_HORIZON,
=$color_grid);

/| print some text

imagestring($image, 3, 10, DIAGRAM_HORIZON + 10, PLOT_MIN, $color_grid);
imagestring($image, 3, $width - 30, DIAGRAM_HORIZON + 10, PLOT MAX,
=$color grid);

// return image
return($image);

}

function plot($image, $x, $y)
{
// import the color handle
global $color plot;
/] set these as static to "remember" the last coordinates
static $old_x = PLOT_MIN;
static $old_y = 0;

/] only plot from the second time on

if($0ld_x != PLOT_MIN)
imageline($image, $old_x / PLOT_STEP, DIAGRAM_HEIGHT -
= ($0old_y + DIAGRAM_HORIZON), $x / PLOT_STEP, DIAGRAM_HEIGHT -
= ($y + DIAGRAM_HORIZON), $color plot);

$old x
$o0ld y

$x;
8y;

Polymorphism and Self-Modifying Code 83

/| see if we've been invoked with a function string set
if(!isset($function_string))
{
/] no, there's no function string present,
/] generate an input form
print("<html><body>");
print("<form action=\"".basename($PHP_SELF)."\" method=\"post\">");
print("Function definition: <input type=\"text\"
=name=\"function_string\" value=\"(m*x+b)/(x/3)\">
");
print("Required PHP code: <input type=\"text\" name=\"req_code\"
=value=\"\$m = 10; \$b = 20;\">
");
print("<input type=\"submit\" value=\"Parse\">");
print("</form>");
print("</body></html>");

else

// translate input function to PHP code
$parsed_function = parse_function($function_string);

// *** NOTE: security holes! (see book contents) ***
eval($parsed_function);

/| create image
$image = create_image();

// plot the function
for($x = PLOT_MIN; $x < PLOT_MAX; $x += PLOT_STEP)
{
$y = calculate($req_code, $x);
plot($image, $x, $y);
}

/| set content type
// header("Content-type: image/gif");
header("Content-type: image/png");

/| send image
// imagegif ($image);
imagepng($image);

The script is executable; you can use it directly in your browser. On first invocation, it
will notice that you haven’t supplied a function to plot yet and display a little input
form, as shown in Figure 2.13.

84 Chapter 2 Advanced Syntax

File Edt “iew Go Communicator Help

Function definition: |im*¥+b3 fnl3)
Required PHP code:|$rn = 10; $b = 20;

Parse |

Figure 2.13 Input form of the dynamic function plotter.

The first field takes the function that is to be plotted. This example makes the
assumption that x is always the only variable this function depends on. In the second
field, you can enter a bit of PHP code that will be executed prior to evaluating the
function statement in order to allow assignments to constants (in our case, m and b).

Warning

The technique used here to directly execute PHP code with eval() supplied
by the user should never (we repeat: never ever) be used like this in production
scripts. Executing user code introduces a huge security hole into your
programs, as everyone could send something like system("rm -r /*"); and
delete all data your Web server has access to. It has been done this way here as
we want to concentrate on dynamic code generation and execution; for an
elaborate discussion about how to secure your scripts (and avoid execution of
malicious code), see Chapter 4,“Web Application Concepts,” and Chapter 5,
“Basic Web Application Strategies.”

For now, you can simply click Parse. Figure 2.14 shows what will appear next.

So how did the script get from the input form to this graphical output? Let’s
discuss the inner workings step by step.

After you have submitted the input form, the script starts executing the else()
clause of the main if() statement. The first function called is as follows:

/] translate input function to PHP code

$parsed_function = parse_function($function_string);
parse_function() creates the PHP code from the supplied user input by applying a
regular expression to it. To make comfortable use of the math function, it’s embedded
into a small function, which just assigns the appropriate values to the constants (by
referring to user input again) and then executing the math statement, returning the
resulting value to the caller.

Polymorphism and Self-Modifying Code

ot— GIF image 200x300 pixels - Metscape
File Edit %iew Go Communicator Help

T

0.1 100

Figure 2.14 Sample output of the function plotter.

The function generated by parse_function() would be as follows for the example
(m*x +b) / (x/3):

function calculate($req_code, $x)
{ eval($req_code);
return(($m * $x + $b) / ($x / 3));

}
$req_code contains the input from the second form field, in this example
$m = 10; $b = 20;. Executing that using eval() results in correct variable
assignment for the next line, which already does all the calculation—and that’ it!

Note: For important information about the eval() statement, see the earlier
warning!

The rest is straightforward function plotting; the for() loop iterates through a
predefined range and uses calculate() to determine the curve’sY value in each

iteration.

85

86

Chapter 2 Advanced Syntax

Self-Modifying Counter

To name just a simple example, hit counters can be created using self~-modifying code.
Usually, hit counts would be calculated from log files or retrieved from a database—
but a much simpler method is to use “self~contained” counters. Self-contained means
that counter code and counter data are actually in the same file:

$counter = 0;

PIEETEELEEL el
// Do not modify above this point
NNy,

/] increase counter
$countert+;

/] write counter back to ourselves
$file = fopen(basename($PHP_SELF), "r+");
fputs($file, "<?\n\$counter = $counter;");

// print counter (or do something else with it)

print("$counter hits so far");
In the first line, the counter is reset to 0. The next line then increases it, and now
comes the interesting part: The code opens its own file and replaces its first line. This
results in a different interpretation of the file when it’s being processed by PHP the
next time—the source would look like this:

$counter = 1;

NNy,
// Do not modify above this point
NNy,

/] increase counter
$countert+;

/] write counter back to ourselves
$file = fopen(basename($PHP_SELF), "r+");
fputs($file, "<?\n\$counter = $counter;");

// print counter (or do something else with it)

print("$counter hits so far");

The first line now sets $counter to 1 and not to 0. Every time the file is processed, the
first line will change and reflect the number of hits this file has had so far.

Note: This code will have trouble handling concurrent accesses. Two PHP processes
might read the file at the same time (and write to it at the same time as well), which
would result in an incorrect hit count.You definitely will run into trouble using this
technique without process locking in a high-traffic environment.

Summary

Summary

In this chapter, you’ve learned a lot about PHP’s advanced syntax and good coding
practices. You've seen how to create constants using define().Then the more tricky
aspects of arrays were outlined, and you learned that you should use list()/each() to
traverse hashes. We've explained PHP’s OOP features, and shown you how and when
to use them—and when to stick to procedural programming instead. Because PHP is
an interpreted language, it allows many features that would be very hard to implement
with traditional compiled programming languages: variable variables and functions,
self~-modifying code, and runtime evaluation of source code. With this knowledge,
you're well prepared for advanced PHP programming, and a big step further on your
way to becoming a PHP wizard.

87

Application Design:
A Real-Life Example

Prevent trouble before it arises.

Put things in order before they exist.
The giant pine tree

grows from a tiny sprout.

The journey of a thousand miles
starts from beneath your feet.

APPLICATION DESIGN IS A TOPIC SO BROAD that a whole book couldn’t fully cover
it. The term application design contains merely every single part of development, from
data structure layout, flow charts, and entity-relationship diagrams to code layout,
documentation, and anything in between. Because it is so important, however, we
decided not to exclude it from this book, but instead to tackle a discussion of
application design by restricting the topics covered to a “hands-on” example, namely
phpChat. This chapter will give you an in-depth view of this real-time chat server
application implemented in PHP, similar to an extended software case study. We hope
that you can extract useful information and methods to use when designing your next
application.

90 Chapter 3 Application Design: A Real-Life Example

Many of the boxed notes in this chapter contain remarks about techniques
common to application design that you should memorize and try to use directly on
the suggested example (or phpChat in general), and indirectly on your next project.
Note: Another, more theoretical but shorter discussion about application design can be
found in Chapter 7, “Cutting-Edge Applications.”

Project Overview

When designing an application, you start with the idea of what the application is
supposed to do. In the case of phpChat, the application is supposed to provide a
browser-based chat service.

The chat should have the following features:

= Real-time chat. No deferred relaying of messages and no refreshes.

= No client-side programming. The browser should be confronted only with
pure HTML (and eventually some JavaScript).

= Networkable. It should be possible to link chat boxes.

= Generic. Make as few assumptions about the target systems as possible and
introduce as few requirements as possible.

= No design enforcements. Separation of code and page layout.
= Easy to use and administer.
= Unlimited number of clients and chat rooms.
Once you've gotten this far and know what your application is supposed to do, you

have to evaluate the concept and create a more detailed overview of how the
application should be laid out.

Take the time to write down all the requirements. It helps a lot, especially as a
reminder later on.

Comparing Technologies

When designing an application with a customer, this step is called creating the
specifications (or just specs). At this point, the customer can still influence the layout
of the application. This is very important because the application must meet the
requirements listed in this step, or it won’t be approved by the customer.

The Customer Is Always Right, Even When He's Wrong

Customers who contract you for an application often do not have enough
expertise to design such an application by themselves, which is why they hire
you. When discussing requirements with customers, guide them when theyre
suggesting bad solutions. For example, if the customer says, “I want a chat

that displays full-screen images of every chatter, refreshed at least every second,”
you might make this counter-suggestion: “Wouldn't it be better to try to stick
to thumbnail views next to each line? Most of your chatters won’t have enough
bandwidth to display full-screen pictures at all.”

But be careful; never insist on your point of view (except when customers want
you to implement unrealistic features). After all, customers pay you to
implement their vision. To avoid losing a contract, you may have to accept
temporarily implementing a bad solution (when you see that you can’t talk the
customer into doing it the right way), and then later on change it when the
customer sees that it won’t work out using their strategy.

For this project, you will take the role of the project manager and the authors will be
your customers. Since we’re nice customers, we won'’t keep insisting on nailing down
further details of this application; we’ll leave the rest of the design to you. Whenever
this chapter hits a point where a choice or decision can be made, sit back and try to
make your own choices. Closely evaluate all facts and then compare your results with
the conclusions discussed in the book.

Comparing Technologies

Before even starting to think about code layout, there’s a phase we don’t know what
else to call but “getting things together.” This is the intermediate step between the idea
and the specs/code layout stage—figuring out the inner workings and on what to
base them.

To make it clearer, let’s go back to the very beginning:

= What do we want to create?

= How are we going to create it?

= Are there any existing implementations of our idea already?

91

92 Chapter 3 Application Design: A Real-Life Example

= Do similar systems exist that perform almost the same task?

= If so, can we reuse anything from that design?
= Can we reuse foreign techniques, maybe add up to our system with them?

Questions over questions.

The first is easy to answer. We want to create a chat system. How? Well, with PHP,
and somehow server-side—we don’t know much more about it at this time.

Are there already any chat systems or something similar out there? Indeed there are.
It starts right at your shell—the “talk” command allows you to chat with other people
that you can reach via a valid network link (or local link), as shown in Figure 3.1.

net - PulTY [=]

(O]

Figure 3.1 The traditional “talk” command.

Comparing Technologies

Of course, this isn’t as powerful as we'd want it to be, but it’s a start. Next, we could
surf the Web to look for pages that have one of the (nowadays almost obligatory) chat
links. Although they differ widely in look and feel/implementation, most of them can
be boiled down to the following:

= Java for fancy interfaces, although some use plain HTML.
= A proprietary protocol with a single server (or simply database-backed).
= Few predefined rooms.

= Few predefined commands.

Apart from these chat setups, there are chat applications and networks such as
Mirabilis’ ICQ or the diverse Instant Messaging Systems—systems that don’t always
provide real-time services and generally require additional proprietary client software
to be installed on every participating system.

However, one system stands out from the list. IRC (Internet Relay Chat) is a widely-
known and long-used chat protocol used by many networks, some of which carry
hundreds of thousands of users simultaneously. The IR C protocol is text-based—a
drawback when operating under high load (long string commands generate much
more traffic than single binary characters), but this also makes it significantly easier to
process. Most current IRC servers support compressed backbone links, which greatly
reduce traffic.

Although IRC requires special client software on every participating system, we can
“tweak” this requirement to our advantage: Why not provide the client software
ourselves server-side, and abstract it by using an HTML interface and allowing each
user access to the network through an HTML client? This would give us control over
what the user can do (each user is required to use our HTML client). Additionally, we
have all the advantages of an existing network system: reliable client software, proven
concept, hundreds of tools, etc. We could even allow users to use their own client
software—an option to be avoided in most cases, however, as we want to create a
“closed” chat network. On a closed network, you know every way that each client can
access your network. By limiting the access points to specific setups, you greatly
reduce the risk of being attacked.

This directly leads to the question, do we need a real protocol such as IRC? Or
would it be sufficient to simply use a database-driven protocol, with a remote
synchronization feature to provide the requested networking abilities?

Questions such as this will arise every time you plan an application, and they’ll
arise often. Make sure that you've got all of them covered, and make sure that no
questions will arise at a later stage during development. This is the point where
you can still address these questions; later on you might be unable to resolve
them (and eventually get your project kicked into the trash). A good project is a
project without doubts, without uncertainties, without inconsistencies, and
without unforeseen eventualities. Make sure that after your planning phase you
can assure a stable, fully evaluated situation!

93

94 Chapter 3 Application Design: A Real-Life Example

So let’s get back to answering the question: Do we need an open (and perhaps too
complex) protocol such as IRC, or should we stick with a conventional database
approach? The simplest method to find an answer is also the most logical one—
compare pros and cons and choose the option with the best results.

Implementing IRC as a protocol into the chat system will introduce a significant
amount of complication because of protocol processing—processing network protocols
requires nonlinear coding, something that isn’t really supported by PHP. (To react to
network messages, we need an event-based system.) On top of that problem, we’d
need a way to handle message exchange efficiently; that is, dealing with messages from
a user and for a user (which, unfortunately, may not always be handled in the same
way). This problem exists in the database-backed solution, too, of course, but the
database-backed solution doesn’t require protocol handling. A lot of databases are
supported natively by PHP, and those that aren’t are most likely supported indirectly
by ODBC.To gain the ability of networkable chat boxes, we'd only need to create a
tool that can synchronize between chat boxes. (Unless you only want to run one
central database server that’s accessed by all boxes simultaneously.)

What would you choose?

Spoiler: phpChat is based on IRC, and this is why:

= Using a database, we'd introduce some kind of “proprietary,” private protocol
that wouldn’t be able to interface to other standard systems. In times of
interoperability and interconnectivity, this is a bad thing.

= An IRC library that functions well (namely phpIRC, see
www . phpwizard.net/phpIRC) abstracts access to IRC networks into a set of easy-
to-use API functions—and makes IRC handling equal to database handling in
terms of code complexity.

= Existing IRC server software handles all the itsy-bitsy teenie-weenie problems of
user management, reliable traffic forwarding, routing, etc., across networks. The
software has been around for a long time and is proven to work, plus it’s
available for all types of systems.

= IRC is extremely scalable. If you run into load problems on server A at peak
times or due to unforeseen events, simply fire up server B and dynamically
establish a server connection into the existing chat (IRC allows you to do so,
and 1s fully automated)—and you now have another server with enough free
capacity for additional users.

IRC Network Basics

IRC Network Basics

Having chosen a communication standard for the chat, we should take a look at how
exactly IRC networks are built.

Ideally, you should have evaluated the IRC network basics discussed in this
section prior to choosing IRC—since it’s a bad thing to find out that IRC
introduces a complicated structure after already having made the decision to use
it. To this point, however, we’ve been working with “common knowledge”
about using IR C networks, just for the sake of application planning. Now that
we've led you to the “right” method to use for the application (IRC), this
section provides the details you need to execute that plan.

IR C networks distinguish between clients and servers. Users can participate on the
network only by using a special client software that establishes a client link to a server.
All servers on the network are interconnected using special server links. Current
implementations of IRC servers only support hierarchical structures, meaning that
there must not be redundant ways to reach a server. This forms the net into a tree-like
structure prone to network splits, but also greatly simplifies routing: All servers simply
have to send all incoming data to all other links, without fearing to send redundant
information to a server.

Each server can have a number of clients; the maximum number depends on the
number of connections the server is willing to accept (of course, limits also exist in
terms of network capacity and server load). As shown in Figure 3.2, each server can
reach every other server across more or fewer server hops, so each server simply sends
all incoming data to all outgoing links. For example, Server C and Server F might
carry clients participating in the same channel (channels are IRC’s chat rooms—places
where people can “meet” and “talk”). In this example, Server C would send the data
via the only link it has: Server B. Server B then distributes the data to its other links,
namely Server A and Server D. Server A doesn’t have any other links, so it won'’t do
anything, but Server D would pass on the data to Server E, and Server E in turn to
Server E Pretty easy to implement, but with one drawback: If Server A doesn’t have
any clients connected to it participating in the channels to which Server C sends data,
all data for Server A targeted at this channel would simply waste bandwidth.

RFC for IRC

Similar to all open standards on the Internet, the basics of the IRC protocol have been specified in an
RFC (Request For Comments). The RFC for IRC is RFC 1459, which can be retrieved, for example, at
www.irchelp.org, a site that carries a lot of information on IRC.

95

96 Chapter 3 Application Design: A Real-Life Example

Server A
—| Server B |7| Server D |—| Server E |

Server C

Figure 3.2 A sample IRC network structure.

This is one of the main problems of this “limited by design” network: All public traftic
has to go to all servers. But will this problem really arise under the conditions in
which we intend to implement our IRC network? Surely not, as the number of
clients we intend to handle will never be so large as to be harmful, given a standard
server-hosting situation. In internal networks, this problem shouldn’t arise at all.

To reduce the total number of critical links, the network can be laid out to follow
its physical topology. If one server is connected with higher capacity than the rest, for
example, it can take more leaf nodes than others (connecting lots of leaf nodes to a
server with a small backbone wouldn’t even make sense). Another option is to set up
the routing to fit the network. For example, U.S. servers are homed in the States,
German servers are homed in Germany, and so on. Frankfurt has an overseas link to
New York; thus, the IR C server in Frankfurt should link to New York’s server
(following the network’s physical layout). It could also be done in another way:
Frankfurt could link to, say, Poland. But if Poland doesn’t have its own overseas link,
the traffic routed from Frankfurt to Poland would need to find some other way to
cross the ocean—it would be routed to some other country (or even two or three
countries) until it finds a free overseas link. This additional routing wastes a lot of
bandwidth; thus, attempts are being made to adapt the IRC network structure to best
fit the underlying physical network structure.

These design problems are present only in the biggest networks, carrying tens of
thousands of users. These networks really need to find reliable links for their
backbones. Typical Web-based chat rooms or networks are unlikely to carry more than
1,000 clients at once, so you shouldn’t run into serious problems at first. To avoid
complications, however, it’s a good idea to plan around these sorts of problems that
may arise eventually.

From a server’s point of view, the network looks like Figure 3.3.

Fitting the Application into the Network

Multiplexing
A
»
Client 1| €«———>» s
Client 2 €——>» e <—>» Network link
Client 3€———>» r Hub
" v
. <«<—>» Network link
e
" r
Client n€——>

<
<

Demultiplexing

Figure 3.3 Network structure from a server’s point of view.

The structure implemented here is similar to a mixture of a multiplexor,
demultiplexor, and a hub. In the direction client to network, the server compresses
all data from the clients and sends it to the network links. In the other direction, it
determines which information from the network is important for which client and
sends it to the appropriate link. All incoming data from the network that has to be
passed on to the other network links is sent on directly.

Basically, this is the setup we’d need for our own chat system. Now take a minute
and try to imagine how we can achieve our goal. We need a working server
environment that fits the following description:

= Accepts IRC network links
= Accepts IRC client links
= Provides a Web-based user interface

= s as easy to implement as possible

Fitting the Application into the Network

If you came up with a plan to develop your own server in PHP (or something
similar), rethink a bit. You might have gotten a bit confused with the idea that
implementing a chat server means implementing a network server. This is indeed
something we wanted to lead you to, but don’t want you to do, as this is simply
unnecessary—there’s already a well-written server software available for all systems. So
how about using one of the existing servers and representing our server to the
network as a client? The only thing we’d have to do is to add another layer of
abstraction to the network, as shown in Figure 3.4.

97

98

Chapter 3 Application Design: A Real-Life Example

) W |
<« >
CI!ent 1 e R
Clent2 €«——— b [—> C | €«<—> Network link
Client 3 €«— E—
s s
" e e i
. r r <—>» Network link
. v v
) e e
Client n €—— r > r

Figure 3.4 phpChat as an abstraction layer to the server.

The Web server will run the PHP chat server. For each client connection it accepts, it
will create a client connection to the IRC server. This way, we can make sure that all
data we get for this client is meant only for this client—and nobody else. Each chat
process will carry a single user, and doesn’t have to worry about other users. User
coordination, traffic control, and so on can be done by the IRC server, for which we’ll
simply take one of the freely available servers.

This technique also has the advantage that this chat server application can be used
as a safe gateway to IRC networks (see Figure 3.5). A lot of corporate and private
networks are behind firewalls that filter IRC ports. Since this chat is only
communicating via HTTP to its clients (which is not filtered), only the chat server
itself needs an open connection to an IRC server.

Therefore, the only thing we’re going to do is to implement the client software that
would otherwise be required on the user’s side on our Web server. IRC knows all the
commands that are required to set up a powerful chat, and the networking issues can
all be solved by using standard “oft the shelf” server software that’s already available.
Thus, if our interface supports all features of IRC in a convenient way, we're done
with our work.

HTTP HTTP IRC
Port 80 Port 80 Port 6667
Client 1 €— F ";’ > FI{
Client2 €—— b —> C | €«—> Network link
Client 3 €— r >
e S S
- e
. v ; 7 | <—> Networklink
. | \' \'
' I e e
Client n €— r > r

Figure 3.5 phpChat as a safe IRC gateway.

Interfacing the Network 99

Interfacing the Network

As we mentioned earlier, IRC requires some processing overhead. Hacking a complete
protocol handler for interfacing with IRC is a bit of a complex task, but we favored
IR C instead of the database-backed solution because an API already exists that does
this work for us.

Know the market! It’s essential for every programming project to know which
parts have already been done by other people and which still need to be done.
Never reinvent the wheel! Especially for commercial projects, it can pay off
tremendously to buy foreign bulletproof solutions for specific tasks, rather than
design and develop one yourself. The latter is sometimes more expensive and
much more time-consuming. On top of that, external solutions are usually
constantly being improved—a process that’s totally independent of the progress
of your own project. By receiving an upgrade from an external company, you
simply replace a part of your application with a newer version. This way, you
can upgrade certain parts of your application without having to put your own
work into the changes. Plus, when using existing libraries, you automatically
agree to build your project on common, standardized APIs, which is always a
great benefit.

On the other hand, binding yourself to foreign products can prove to be a
negative decision if the producer fails to improve the product or keep it up to
date, as well as if bugs in it aren’t corrected.

In our experience, Open Source products have been the most successful
external parts to be integrated. Open Source products are being improved and
extended extremely rapidly and are usually oriented at common and open
high-potential standards.

Exercise for the Reader

Search for applications/libraries written in PHP that make use of IRC and compare them in terms of
design, flexibility, and ease of use. Of course, the implementation is also interesting (but shouldn't be
your main focus). The design is always the most crucial part of development; after the design is finished,
the actual implementation is usually straightforward and easy to do (even though a lot of programmers
think differently).

100 Chapter 3 Application Design: A Real-Life Example

The library we’ve chosen for this project is phpIRC (www.phpwizard.net/phpIRC), for
these reasons:

= It’s easy to use.
= It’s a powerful, complete APIL.

= It uses event-based processing.

The use of event-based processing is particularly interesting here. This is a technique
usually implemented in traditional applications; for example, all Windows programs are
event-based. Event-based programs run in an endless loop, waiting for something (an
event) to happen. Events can include user input, mouse movements, network events
(incoming packets), etc. As soon as an event is signaled, the program breaks out of its
main loop and searches for a procedure that handles this event. All procedures that
want to handle the event that just occurred are called with the specific parameters of
the event (for example, packet data of incoming network traffic).

Concretely, using “traditional” programming, an incoming ping would be handled
as shown in Listing 3.1:

Listing 3.1 Pseudocode for handling a ping.

again:
wait_for_network_data();

if (incoming_data == ping)

{
send_pong();
update_traffic_counter();
}
goto again;

This code waits until it receives data from the network, then tries to find out whether
the data was a ping. If so, the code sends a pong back and updates a traffic counter for
statistical reasons. After that, it just jumps back to where it began. Imagine this with
hundreds of events, some of which might depend on others, some not, some only
under certain circumstances...A pain!

However, event-based programming makes it significantly easier, as shown in
Listing 3.2:

Listing 3.2 Event-based pseudocode for handling a ping.

event_handler ping()

{

send_pong();

Interfacing the Network 101

}
event_handler incoming_data()
{
update_traffic_counter();
case of ping: handle_event(ping);
}
while(not_done())
{
wait_for_event();
case of network_data: handle_event(incoming_data);
}

The code looks bigger, but also much clearer. The main loop waits for an event to
happen. If it finds that an event happened and that it was triggered due to incoming
network data, it dispatches this event using the central procedure handle_event().
This function then determines a handler for the event and calls it. The handler in turn
updates the traffic counter and launches another event if the first event was a ping.
After dispatching the event using handle_event() again, a pong is sent.

Alternatively, both ping() and incoming_data() could register themselves to
the event "incoming_data". However, creating two different events gives a
greater variety of events and thus allows for much more detailed, target-
oriented processing.

It’s a bit strange at first getting used to event-based processing of information (it works
similarly to a finite-state machine), but it has many advantages:

= A modular structure is forced on the application. Each module works indepen-
dently of the other modules and can easily be changed, exchanged, or extended.

= Any part of the program can trigger any kind of event and thus enforce any
type of reaction in the application (in other words, you can control any part of
your code from any other part of your code).

102 Chapter 3 Application Design: A Real-Life Example

= From one central point of the program, all data can be dispatched to all
recipients transparently. You don’t have to worry about manually copying
and transforming structures; each event handler takes care of receiving its data
on its own.

= New code can be plugged into the application extremely easily, just by creating
a procedure that registers itself to the appropriate event.

Thus, once the main event-dispatcher framework is created, the whole application can
be created by writing handlers, handlers, and more handlers.

Get familiar with the techniques used to implement finite-state machines. These
are elemental in programming and information processing in general.

Luckily, the event-dispatcher framework is already contained in phpIRC, so we won’t
need to do that programming for this project.

Interface Structure

phpIRC forms the IRC client part of the application and is responsible for all
network communication. This means that it also needs to be in control all the time to
be able to react to network messages in a timely manner. If phpIRC’s message-
processing functions were activated only occasionally, safe, secure, and speedy
communication couldn’t be guaranteed. For this reason, phpIRC forces a special
program layout, as shown in Figure 3.6.

Main application

Program entry point
—_—_—

Initialization

Passing control to

phpIRC Incoming

network data

»| phpIRC =
T!\ AA|T Outgoing
Callback 1 network data
Callback 2 <
Callback 3 <
Callback n <%

Figure 3.6 phpIRC’s forced application layout.

Interfacing the Network

After doing initialization and setup, the application has to surrender control to
phpIR C. phpIRC then enters its main event loop and waits for something to happen.
During setup, the application has to register callbacks for each event it wants to
process (for example, incoming private messages, incoming server messages, and so on).
These callbacks are the only possibility for the application to regain control. phpIRC
then dispatches all events to all functions that have registered themselves with the
library. These functions can in turn enter another idle loop in phpIRC to wait for
another event to happen, or they can use phpIRC’s API to perform certain actions on
the network (send private messages, join/leave channels, and so on).

This very basic layout already allows for downstream communication, which means
that phpIRC is able to receive messages from other users. People could actually “talk”
to your script.

Note: Downstream means from the network to the user. Upstream is the opposite,
from the user to the network.

Exercise for the Reader

Structure a downstream interface that makes use of phpIRC’ features.
Implement it on paper to become familiar with phpIR C’s API. Then build a
simple downstream interface that logs onto IRC and displays all messages from
a specified channel.

Downstream Communication

Since chatting is a real-time task, meaning that it happens as you do it and causes
instant replies, we don’t want to introduce latency into the interface. Latency describes
the reaction time of the interface; for example, the time from the point when the
reader presses the Enter key to submit a message until it shows up in the chat window.
Even though a latency of less than a second might objectively be a very short wait, it
seems extremely long and annoying to the user. Ergo, incoming messages must be
displayed at once (or at least as soon as possible). HTTP is a stateless protocol,
however, and doesn’t allow instant updates of pages without reloading a complete
document. Of course, there are multipart documents and automatic refreshes, but these
options introduce a very nasty flicker each time the page loads again, require database
buftering for output, and introduce lag because of constant reconnects and data
transfer from the Web server.

One solution is “streaming HTML,” something that’s not officially supported
anywhere, but works nevertheless: The script that does the interface output simply
idles in an endless loop and doesn’t terminate the HTML page the browser is
receiving. When something has to be sent to the user, it’s printed and immediately
flushed from the server’s bufters. This way, the browser is constantly rendering and
always displays the most up-to-date data. One problem persists in this approach,
however; no complex HTML entities can be rendered on the fly. For example, you
can’t output the rows of a table one by one, because the browser requires all rows and

103

104 Chapter 3 Application Design: A Real-Life Example

columns of the table to be present completely to determine the final size of the table.
As long as you restrict yourself to outputting text lines one after another, and only use
tables when you can print them all at once, everything works fine.

Quirks such as streaming HTML are common tricks that you should know.
Always keep yourself informed about such things.

Streaming HTML also has one implication that some see as drawback and some as
advantage: Since the client connection stays open, there must always be one server
process handling it. This means that every client requires at least one Web server
process to be running only for that client. The advantage is that no overhead “per hit”
occurs. Usually, when the client requests a document, a new process has to be
spawned; the script generating that document has to be loaded, parsed, and executed;
and finally, the data has to be sent. Since the server process now remains in memory,
however, spawning, script loading, and interpretation only have to be done once per
client. On sites that would otherwise have hundreds of hits per second, this might be a
definite advantage. However, each process now stays resident in memory and demands
RAM for itself—on Intel x86 systems equipped with Linux, Apache, and PHP 4.0,
such processes tend to be as big as 2MB each. Consequently, a small server with
minimal RAM on board would soon start to run from swap—and that means death.

Note: Swap memory is virtual memory that’s meant to extend the RAM—the
physical amount of memory on a computer. Swap memory is stored on a hard disk,
which is extremely slow. When physical memory is all used up, modern operating
systems start allocating new memory in the slow swap memory. If a chat server gets hit
by a lot of clients at once, which eat up all physical memory and start running in swap
memory, the operating system will constantly have to exchange parts of the RAM
with parts of the swap memory (since programs can’t be executed from swap
memory), and this starts a “cycle of death”: The operating system notices that a process
in swap needs to be run and loads it into RAM, but has to put another running
process from RAM into swap. It executes the process in RAM but finds the old
process (now residing in swap) has to be run, so it swaps it back into RAM, and so on
and so on.You can quickly kill a server this way, forcing it to be reset or taken off the
net. By the way, this is also a common “denial of service” attack, a bit similar to the
ones that Yahoo! and others were exposed to earlier this year.

Would you have thought about the implications of resident processes? If not,
make sure you do next time! Keep evaluating every situation fully.

Upstream Communication

Upstream communication—that is, accepting user input and sending it to the
network—is the next stage to consider.

Interfacing the Network 105

Here’s the hard part: We can’t send data to the IRC network from just any process.
Why not? Because IRC is a state-sensitive protocol, communication is bound to a
specific client connection. PHP doesn’t allow taking over foreign sockets from other
processes; thus, the main process that also handles downstream communication (the
process that acts as IRC client) runs isolated from all other processes. The question
now is how we can open a door to pass data into the main client.

How would you implement upstream communication? Make at least a
theoretical approach. Draw the dataflow on paper. If you haven’t done so
already, write down at least three possibilities for runtime data exchange.

The downstream process must keep running and may not be terminated. We can’t
simply reinvoke it using a POST or a GET for passing data, since that would mean
launching another process, with the need to re-login, re-setup, etc. Using such an
approach would result in constant login/quit sequences that would be extremely
disturbing in a chat. And it would result in data loss, since during the time between a
logout and a login, lots of messages could be transmitted (which would be invisible to
the newly logging-in client).

The chat could be based on a single bot that stayed online all the time and
recorded all messages for all users into a database. The user interface would then
only need to extract all meaningful data from the database. However, two
problems stand against this possibility: a) The chat would be mainly database-
backed (something we wanted to avoid); and b) It wouldn’t make the clients
visible to other IRC clients, as the bot would be the only “real” client on the
network. This would make usage of the IRC network ridiculous.

Thus, we need at least two independent processes: one that handles the IRC
communication and can’t be interrupted, and another to accept incoming messages
from the user. Some sort of “container” must then be used to interface between the
two processes. Figure 3.7 illustrates this problem.

106 Chapter 3 Application Design: A Real-Life Example

Input field—>»Data exchange container ("door") €—————>»

Figure 3.7 Upstream communication.

The situation can be compared to a car race. The driver racing on the track is the
“main client” and the racing team in the pit is the user input field. The driver is
bound to the race he’s in; he can’t just leave the track and stop to see what’s going on.
Whenever the racing team flags him in for a pit stop, they “interface” to him—giving
him a signal to make a break after the next lap.

What’s being done is (leaving radio communication aside) to signal every time the
driver passes the finish line. This signal works as the “interface” to the driver. Basically
this is what we need to do, too—signal to our main process. Since the main process is
event-based, we frequently get the chance to take control over the application and do
what we want to do.This means that we can install a handler that “looks” frequently
for a signal from the outside. The method to periodically stop and check for incoming
data is called polling and will be the preferred method for phpChat. phpIR C features
idle callbacks, which get invoked every time phpIRC has nothing to do and simply
waits for something to happen on the network. Tagging a handler to this event enables
us to watch out for a signal. Now, how are we going to signal something? This is
actually pretty easy, using one of the following methods:

= Set a flag in a database.

= Create a lockfile in the file system.
= Use semaphores.

= Set a flag in shared memory.

These are basically the methods that we have with PHP to “leave a message.”
The following sections describe each method.

Pipes can’t be used for interprocess communication here, because a pipe
requires two processes to be running at the same time. Our situation requires
interfacing one constantly running process from other, short-term processes.

Note: Of course, more exotic methods are available, such as sending emails between
processes. We’ve seen people doing this, but we won’t go into that option here, as the
disadvantages should be clear to the reader.

Setting a Flag in a Database

Setting a flag in a database is probably the de facto standard method for PHP users:
Connect to a database, leave some data in it, let it be processed further by other
processes. This method is extremely easy to implement and is available on all systems,
but has a disadvantage. Can you tell what the disadvantage is?

Interfacing the Network 107

The disadvantage doesn’t come from the database stuffer (the process that inserts
user messages) but rather from the database reader (the main process that retrieves all
user messages from the database). To achieve a good “chat feeling,” we need as little
latency as possible—and thus a very good response time. The response time is crucial
for Web-based chat, as this is how the user will actually feel “integrated” into the
action. When the messages come slower and slower, users quickly become frustrated
and quit. Our testing showed that a latency of more than a second is too much.To stay
below this value, the poll frequency in which the main process has to read messages
from the database must be very short; the default value in phpChat is 0.5 seconds (two
checks within a second). Now, as soon as a lot of clients have to be handled by the
chat system, the database gets quite busy and takes up more and more resources. At
about 40-50 queries per second, our test server spent about one third of its processing
time simply executing database queries. Even if this was a disqualifying benchmark for
the database system (it should have been able to process many more queries), some
optimization is obviously necessary, and this isn’t the ideal setup.

Creating Lockfiles

Our next idea was that, if the database took up too many resources when handling
interprocess communication, a file system might be more efficient.

But the file system clearly lost the race. Again, the stuffer wasn’t the problem—
creation of the lockfiles worked smoothly. To detect whether a lock was set, however,
lots of calls to clearstatcache() had to be done in order to correctly determine
whether a lockfile had been deleted or was still present. clearstatcache() had such a
hard impact on the system performance that we didn’t try to look further into this
option; the chat only worked at a quarter of the performance it reached using the

database-backed approach.

Create your own benchmarks. Make test scripts accessing the database and the
file system at high frequency. Write down your results and compare them. This
is always a good idea when evaluating data-exchange methods—never trust
theoretical descriptions of what the systems can be capable of! In practice, most
things will look different.

Using Semaphores

Of course, the reasons for the poor performance of the former approaches are easily
recognized.

108 Chapter 3 Application Design: A Real-Life Example

What are the reasons? Try to find and write them down. Try to find the critical
points—this is crucial when having to optimize later on.“A chain is only as
strong as its weakest link,” and software is only as fast as its slowest inner loop. The
process of finding these bottlenecks is called profiling and is extremely important.

When using a database, the bottleneck is the database: the time required to invoke the
database, let it execute the (relatively small) query, retrieve the result, and determine
what to do next (called the overhead) is pretty long compared to the result we're
getting. In other words, we're using a huge software system designed for complex data
storage to exchange simple, Boolean values—if there’s something a database was not
designed for, it’s this. No wonder it didn’t perform optimally; the bottleneck is the
overhead, the time required for setup and deinitialization.

The file system performed badly because it was not designed for this usage, and
because of other limitations: PHP doesn’t include optimal file-system access methods.
Determining the existence of a file requires constant cache invalidations and
recaching—again, large overhead for a trivial task.

So why not use something completely different? We'’re surely not the first people
having to deal with interprocess communication; others must have come up with
good solutions for this already. And so we reach the next possibility: semaphores.

Semaphores do exactly what we want to do: They work as signals. Semaphores are
counters stored in shared memory.You can “acquire” a semaphore and thus increase its
counter, and you can “release” a semaphore, decreasing its counter. Additionally, there’s
the possibility of waiting for a semaphore to become free, meaning that its counter
falls back to zero.This option has one drawback, however: Semaphores were meant to
lock resources, to create some kind of scheduling mechanism allowing many processes
to wait for available time on a device, or something similar. Whenever you're waiting
for a semaphore to become free, the process that’s waiting is put to sleep and cannot
perform other tasks. If the main process was waiting for the user-input field to signal a
new message, it would sleep and couldn’t process the incoming network traffic.

No reason to give up yet; people have come up with still other solutions.

Setting Flags in Shared Memory

Shared memory is similar to semaphores, but a bit more versatile; shared memory is
memory that’s available to every process in a system. Multitasking systems are usually
designed in such a way that each process is running completely isolated from other
processes for security reasons. Different processes can share data by setting up and
connecting to special memory blocks, namely shared memory blocks. These blocks can
then contain variables (or any other kind of data, but PHP only supports storage of
concrete variables).

Interfacing the Network

This is exactly what we want: the ability to store a Boolean value in a place in
memory where every process can look at it. Since shared memory works (as the name
suggests) only in RAM, it’s extremely fast and requires almost no overhead. With this
option, every chat process looks for its own variable in shared memory and only issues
a query to the database whenever it finds that variable set by the user-input field.

Why is the data exchange still based on a database at the very end? Try to find
some answers.

The database is still being used for one main reason. Shared memory is not supported
by default in PHP; you need to specifically compile support for it into PHP. However,
many people with access to a PHP-enabled server don’t have the option of
recompiling PHP because they only rented space on the server, because they don’t
have sufficient rights, or maybe because others depend on a certain setup of PHP.
Leaving the database in as the final data-exchange path makes use of shared memory as
an optional optimization. People who can’t use it can simply disable it and still have a
fully working version of the chat server—operating at suboptimal performance, but
operating.

When creating an application designed for widespread distribution, keep in
mind that not everyone will have the same setup as you—and probably not the
possibility of re-creating your very special setup. Even though PHP is 99%
system-independent, some things do depend on the system. Carefully calculate
whether enforcing certain circumstances is worth a potentially huge loss of
customers.

Interface to the User

Now that we moved all the tricky parts with the data exchange out of the way, the
actual HTML interface to the user is trivial. We know how to accept input from the
user and how to deal with network communication. The last “problem” is packaging
the generated output for the user in a convenient way. HTML offers only one way
to have different windows act independently in one browser view: framesets. The
interface typically consists of the user-input field; the chat output field; a nickname list
(or just nick lisf), which shows other participating clients in the same room; and an
action panel to allow one-click control over the chat for actions such as nickname
changes, joins, parts, quits, and so on. These activities can all be handled by single
processes whose output will be integrated into a frameset.

109

110 Chapter 3 Application Design: A Real-Life Example

The main process, also responsible for the chat-output streaming, will keep state
information updated in a database that all other interface components can access,
retrieve, and display in a suitable fashion (see Figure 3.8).

network network
data data

OutgoingT Incoming

via shared memory Interface

Main IRC process I—) components

via database via database (nick list, etc.)

via frameset

HTML output
to user

Figure 3.8 The final application layout.

Interface to the Developer

An interface for developers? What does this have to do with chat? And how is it
supposed to work? Typically, most applications sufter from the disability of being
“solid,” meaning being either completely unmodifiable or difficult to modify by
foreign developers. In terms of end-user-oriented software (for example, desktop
environments such as Windows, KDE, MacOS, etc.), hardly anyone will ever find the
ideal solution. Similar to a chat system, most people who download it say, “Hey, great,
but it lacks this and that,” or “Cool, but I don’t like the way it does xyz.”

Without an easy, clearly exposed path for modification by anyone using it, most
applications end up in the trash. Most people won'’t even try to work on a program
they didn’t develop themselves if the ease of doing so doesn'’t hit them right in the face.

This means that for the chat application to consistently enforce independence of
code and interface layout (allowing an interface to HTML developers) and to
consistently enforce independence of data-processing steps, we need to create a solid
application core (the part of the application that nobody should ever need to change)
which interfaces to a distributed set of plug-ins (the part of the application that most
people will want to change somehow).

Think again about the importance of these enforcements. Would you like an
application to be designed like this? Would you even need it? Think about how
this could be realized.

Interfacing the Network

Interface to HTML Developers

In terms of the HTML interface, abstraction of code and layout is done using
templates. This is the easiest possibility for tweaking an application to your needs, yet
it’s also the most powerful. Within seconds, you can change the look and feel—
without having to modify a single line of code. Everyone with basic HTML
knowledge could completely restructure the way the application would show itself to
a user. As this method is discussed elsewhere in this book, we won’t go deeper into it
here. To find more details about using templates, please read Chapter 5, “Basic Web
Application Strategies.”

Interface to Code Developers

Providing an interface to other developers is usually associated with the term API
(Application Programming Interface). APIs are normally provided by libraries (such as
phpIRC), but not by complete applications. But applications that have the capacity to
be extended by a programmer are much more successtul than applications that must
be used “as 1s.”” Of course, in terms of PHP applications, anyone can modify the source
code, but many people refrain from analyzing a complex system and applying
modifications to it. Thus, the application itself needs to expose certain ways of being
extended.

Note: We're differentiating here between applications and libraries. Libraries are meant
to be used by applications, cannot be run stand-alone, and are generally much easier to
extend than applications. Applications consist of a full, closed system.

Try to find out how common applications can be extended. For example, for
your favorite text-processing tool, see whether the developers provided the
capacity to extend the tool’s functionality.

Two primary possibilities of extending applications have evolved: Either the
application provides scripting capabilities (similar to macros), or the application is able
to use plug-ins. As for PHP, implementing a script language in a time-critical part

of a system...we don’t need to think any further. On top of that, the complexity of
creating a full-fledged parser is way too much to ask. But plug-ins are much easier to
implement and have many advantages. A plug-in is a little piece of code that can
register itself with the application and catch certain events from it, get access to
internal data, and so forth. While integrating seamlessly with the main system, plug-ins
still remain isolated files that can be detached and spread separately. They can be
attached to the system without having to modify a line of code, which allows a system
administrator without any knowledge of PHP to extend the application by using
foreign code. Concretely, this is realized as shown in Figure 3.9.

111

112 Chapter 3 Application Design: A Real-Life Example

registers itself registers itself
| | > | wa —
Plug-inA | < > | Mainsystem |— 5 | PluginB
receives data from receives data from

Figure 3.9 Chat system with plug-ins.

Design your own plug-in-system, at least theoretically. Create a minimal
application that’s able to register plug-ins with itself and execute them.

When starting up, phpChat includes an include file, which in turn includes all wanted
plug-ins. Listing 3.3 shows how this include file works:

Listing 3.3 The plug-in includer.

LEEETIEEIEEEE L rd
I

// Plug-in Integrator

Il

LEEETEEETEEEE TR e i e rd

include("chat_plugin_out_htmlspecialchars.php3");
include("chat_plugin_out_link_transform.php3");
include("chat_plugin_out_colorcodes.php3");
include("chat_plugin_clock.php3");

include("chat_plugin_cmd_basic.php3");
include("chat_plugin_out_basic.php3");

PEHELEELETE LT LT

Each of the plug-ins is built up in the same way, consisting of a main part and an
event part. The main part calls two functions in phpChat, with the following names:
chat_register_plugin_init() and chat_register_plugin_deinit(). Each function
takes as a parameter the name of another function, which should be called for plug-in
initialization and plug-in deinitialization, respectively.

phpChat adds these function names to an internal table. Upon initialization of the
chat, as soon as phpChat is fully set up, it makes a run through the initialization table
and calls the initialization function of every plug-in that registered itself. Similarly,
upon shutdown, it runs through the deinitialization table. This method allows signaling
the plug-ins to activate and deactivate themselves.

Interfacing the Network 113

To be useful in the application, phpChat offers a set of events to which each plug-
in can attach itself. During plug-in initialization, each plug-in tells phpChat to send a
set of desired events. Events might include the chat being idle, the user submitting a
new message, the user clicking on a nickname in the nick list, an incoming message
from the network, and so on.

At runtime, the plug-ins can intercept these events and perform certain tasks. The
clock plug-in, for example, registers itself to the “idle” event and checks the current
system time frequently. After a predefined number of minutes, it announces the time
to the user.

For most events, phpChat also sends parameters (such as the message texts for
incoming messages), which the plug-ins are allowed to change. For example, the
list of plug-ins in Listing 3.3 includes plug-ins named htmlspecialchars and
link_transform. These plug-ins change the output of messages; htmlspecialchars
applies a call to htmlspecialchars() to all printed text (for security reasons, so that no
one can insert malicious HTML code into the chat), and the link transformer detects
all URLs and email addresses and prefixes them with or mailto:,
respectively, so that users can click links right in the chat window (see Figure 3.10).

orites

QD =
Back Forerd) Stop Refresh Home Search Favorites History Mail Prirt
Address [] hi: /s phowelder com: 1 234/phpChat_demo/chat_login phe3 =l @0 ||Lks>

[phpChat] Attempting to connect to server, please be patient...
- 25/1/2000 11:22

 chris
© Moderator
tigloo
oy

Ueleome to the phpChat demo installation!

Feel free to test everything. For developer
contact, please write to Till Gerken,
£111Bphpwebdev. com

This server 15 run by Tobias Ratschiller,
tobiasBdnet.it

[phpChat] Connected. Chat ready.

[11:59] *%* Joins: tigloo (nobodyBuww.phpwebdev.oom)

[11:59] <tigloor we canmnot use HTML here: <img sro=rerror.giffs

[11:59] 7% Joins: toy (nobodyBuww.phpvebdev.comn)

[12:00] [phpChat] Local time 15 now 12:00

[12:00] %% Joins: chris (nobodyBuww.phpvebdev.com)

[12:00] <tigloo> links are automatically transformed: http://wyw.phpwizard.net
[12:00] <toyr cool!

Actions
Message: | Subrmtl H““ | Change Nick | Whls

@] it/ phpwizard net/ | | (D ntenet .

Figure 3.10 The plug-ins at work.

114 Chapter 3 Application Design: A Real-Life Example

As you can see, plug-ins offer an extremely powerful way of extending a complex
system. Consequently, phpChat has abstracted most of its own internals into plug-ins
as well. The complete command interpreter has been moved into a plug-in, as well
as the complete set of text formatting/printing procedures. This means that there is
only a solid kernel that doesn’t have to be changed because there’s simply nothing in
there that would require changing—the rest can be freely modified, extended, even
removed, without any impact on system performance or operability. Have you ever
seen an application that doesn’t complain about someone deleting its files? Using this
technique, an application won’t complain—and will even dynamically adapt to it.

Plug-ins can be used in many ways, not just for chat programs. For example,
you could also build a portal site consisting of the traditional news page, an
email interface, etc. Using plug-ins, you can design a “site kernel” that handles
all basic issues such as providing page layout, database back end, sessioning, and
so on. Based on the site kernel, you can then create plug-ins for displaying
news, sending and receiving email, even for providing difterent methods of
logging in. Even if it’s quite an effort, we encourage you to create a plug-in-
based application as an exercise. It will be worth the work.

Listing 3.4 shows a plug-in template implementing a “dummy” plug-in as code base
for new plug-ins.

Listing 3.4 A plug-in template.

<?

I

// Use these variables to tell the plug-in installer how you named your

/] initialization and deinitialization functions. This is done to eliminate
/1 the need for changing the installer code, which would ask for errors.

/1

$plugin_init_function = "myplugin_init";

$plugin_deinit_function = "myplugin_deinit";

/1

Il

I

LEEETIETILEEE L i e i rr i
I

/] myplugin_idle_callback(int code, mixed parameter) - example callback

/1l

LEEETEEEIEEEE PP e e e i e rd
/1

Interfacing the Network

// This is an example for a callback function. See below on how to register
// and remove it from the call chain.

/] $code specifies the reason for invocation, $parameter contains all callback
// information.

/] The return value should always consist of a modified or unmodified version
/] of the input parameter $parameter. The return value is used as input

// parameter for the next callback. This allows for multi-stage message

/| processing and such.

THEEEEELETE LTI LT T]

function myplugin_idle_callback($code, $parameter)

{

return($parameter);

}

NNy,
/1l

/] myplugin_init() - initializes this plug-in

/1

TIPETIEEEE T i e i i i i irrrrrl
/1l

// Put all your initialization code in here. This code will be called as soon
// as the main bot is all set up with connecting and callback installation;

/] thus, you can rely on a safe environment.

/1 Although the return value is currently not used, "0" should indicate

// initialization failure and "1" initialization success. This might be used
// later on to enable plug-ins to stop the current chat session right after

/] login.

/1l

LHLLEEEEEEEEERI e b rrr iy
/1l

// Return value:

/1 @ - error

/1l 1 - success

/1l

LHLEEEEEEEEEETI L rrr ey

function myplugin_init()

{

/] register callbacks here
chat_register_callback(CHATCB_IDLE, "myplugin_idle_ callback");

return(1);

continues

115

116 Chapter 3 Application Design: A Real-Life Example

Listing 3.4 Continued

}

FEPEELELEE TR e e rr
/1

/] myplugin_deinit() - deinitializes this plug-in

/1l

PEEEEEEEETTTTEE i e b r i ey
/1l

// All deinitialization code should go here. This function is called before

// the bot goes down; thus, all network connections are still active.

/1l

/] Although the return value is currently not used, "0" should indicate

// deinitialization failure and "1" deinitialization success. This might be

/] used later on to force delayed shutdowns.

/1l

PELEEEEEETTTEEE i e i r i ny

function myplugin_deinit()

{

/] remove callbacks here
chat_remove_callback (CHATCB_IDLE, "myplugin_idle_callback");

return(1);
}
LEELETELEEEEEE TP LT LT T]
;; NOTE: DO NOT CHANGE ANYTHING BELOW THIS POINT!
jjll//

// installer code starts here

/] register initialization function
chat_register_plugin_init($plugin_init function);

/] register deinitialization function
chat_register_plugin_deinit($plugin_deinit function);

// installer code done

LECEELLEETEE LTI T

>

Administration and Security 117

The main code registers the initialization and deinitialization routines for this plug-
in. The plug-in initializer then installs the callbacks this plug-in wants to intercept,
and the deinitializer removes them.

Administration and Security

No system is a good system if it can’t be administered. The days when “Netiquette”
made it a point of honor to be polite and integrate oneself into the community are
long gone. Nowadays it’s common to be exposed to hacks, harassment, and other
forms of attacks—and unfortunately, most of them don'’t stay at the verbal level. There’s
hardly anything to say against digging for security leaks and other holes in an
application or network system. Constantly exploiting them, however, is worthy of
condemnation, yet a lot of people consider it “fun.” This demands an external
interface, running independently of the main system, which allows full control over all
of the application’s data and users. In terms of a chat system, this means that we need
to be able to kick users, moderate their messages, and secure chat rooms.

Note: Not all features listed here are implemented into the code on the CD-ROM.
The basic administration system is complete and fully functional, but we’d like you to
exercise and extend the code base with the features you feel appropriate. If you haven’t
made significant extensions to larger applications, we honestly urge you to gain the
experience now.

The question for our chat program is this: Where do we fit in the administration?
We have a few possibilities:

= At network level: We could filter users connecting to the server.
= At PHP level: We could prevent users from logging into the chat.
= At database level: We could discard messages from users from the database.

= At IRC level: We could use IRC’s native network administration features.

Network Level

Securing at network level only allows two possibilities: letting a connection through or
not. This could be realized using a firewall or other possibilities of IP masking. This
method is limited, complicated, insecure, and in general not what we want.

PHP/Web Server Level

Securing at the Web server level basically allows connection to the server but restricts
clients from logging in using password protection (or different methods of authen-
tication). Basically it again boils down to letting a connection through or not, which is
not really satisfying.

118 Chapter 3 Application Design: A Real-Life Example

However, this method can be used to emulate user bans. The common bans for
IR C, namely K-lines and G-lines (local and global bans of users), cannot be used with
a Web-based chat system, as all connections originate from the Web server. The only
ban-able address would be the address of the Web server, which would completely ban
the whole interface from the network. To still be able to filter out special users,
connections should be evaluated at the PHP level.

Database Level

The database level is a totally different approach. Clients are allowed to log in and
chat, but their messages and session information are filtered in the database. Either an
external tool or the chat code itself would check for the user to be allowed to say or
do something and, based on this info, allow his/her messages to be inserted into the
database—or not. But this strategy requires a very tight integration into the main chat
code, is not very flexible (and kind of clumsy), and is inelegant to implement.

IRC Level

IR C provides native administration features built into the server code and network
protocol (we hope you read the RFC and are familiar with these possibilities).
Administration can even be done by regular users. Three levels are available:

= Channel operators. These operators have administrative control over channels.
They can kick users, “mute” them, ban them, make other users into operators,
and such (this level is available to all users).

= IRC operators. These operators have administrative control over the network
(but not channels). They can kill users from the net, ban them, establish network
links, and so on (this level is only available to special users).

= Services. Services have administrative control over channels but no control over
the network, and are not able to perform like regular users. They also require a
special login procedure (this level is only available to special users and is meant
for automated clients).

As you can see, administration at IRC level can be done using a client running
separately from the main chat system. A separate client with IRC operator and
channel operator status would give the ideal combination of features that we need an
administration system to have. Basically, only IRC operator status is needed initially,
since as soon as the administration client has gained IR C operator status, it can gain
channel operator status everywhere by killing all users from a channel. This is not a
very nice method, but more effective and versatile than patching the IRC server code
to give IRC operators equal rights to channel operators.

Summary 119

Implementation

The implementation of the chat administration is designed to be quite similar to the
main chat script. A bot is launched, which, with the help of phpIRC, logs into IRC
and tries to register itself as IRC operator. Then it waits for further commands from a
Web interface. These commands are issued like those in a database-backed RPC
(remote procedure call). The bot will frequently query a table in the database that
contains input commands for it. The commands are put into the database by the Web
interface and consist of a function name, a session ID, and a parameter array. Whenever
the bot finds a new command in the database, it executes it and writes the command
results in an output table along with the session ID.Thus, the Web interface just has to
write a command with a self-generated session ID and then only needs to wait until a
result dataset with the same session ID pops up in the output table (see Figure 3.11).
This method allows flexible remote control over the bot.

Perform actions on the network
according to instructions received
from the database

User input

send command via database
>

>

|Web interface | < Bot process
answers via database

Figure 3.11 Database-backed RPC control over the administration bot.

Summary

In this chapter, you've learned from a real-life example how to plan a development
project. We’ve outlined the typical stages of development:

= Analyzing the requirements.

= Choosing an appropriate technology.

= Defining interfaces and APIs.

= Implementation.
You've followed us through the whole development phase, and we’ve drawn
conclusions from our example that are applicable in most software projects. With this

background, you’re ready for the next part of this book, and we’ll introduce you to
some important concepts of Web applications in the next chapter.

® N SN oA

1

Web Applications

Web Application Concepts
Basic Web Application Strategies
Database Access with PHP
Cutting-Edge Applications

Case Studies

Web Application Concepts

We join spokes together in a wheel,

but it is the center hole that makes the wagon move.

We shape clay into a pot,

but it is the emptiness inside that holds whatever we want.
We hammer wood for a house,

but it is the inner space that makes it livable.

-I-o UNDERSTAND THE IMPLICATIONS OF WEB APPLICATION concepts, you need to dif-
ferentiate between applications and single scripts. A script is a utility, and as such doesn’t
have any context. It doesn’t know about other scripts in your system. An application,
however, 1s designed to perform more advanced tasks. An application needs to main-
tain state and execute transactions, because it’s interactive. Because it generally requires
more user interaction than a single script, you also need to worry about security and
usability. Of course, the return for all this toil is that you can create the next Yahoo!
yourself. It’s applications that make the Web interesting.

HTTP and Sessions

Imagine a KDE application, Kedit for example. (KDE is a windows manager for Linux
and compatible X systems.) A typical operation might include opening a file, modify-
ing its contents, and saving it under another name. Kedit knows what you’re doing in
every step of this process. It knows that you’re editing the file, where the cursor is,

124 Chapter 4 Web Application Concepts

where you move the mouse, and so on. Even if you open a second instance of Kedit, it
won’t get confused; selecting Save in instance 1 won't save the file from instance 2.
This is possible because Kedit (or the operating system, to be exact) knows how to
associate your actions with a specific instance of the application—it receives an event
like “In the instance with the PID 4711 (a PID is a unique process identifier on
UNIX systems), the mouse has moved to the coordinates 10, 4.”

Maintaining State

When Tim Berners-Lee designed the Hypertext Transfer Protocol in 1991, he decided
to make HTTP as fast as possible and therefore leave out any state information.'

HTTP has no mechanism to maintain state; thus HTTP is a context-free or stateless
protocol. Individual requests aren’t related to each other. The Web server (and thus
PHP) can't easily distinguish between single users and doesn’t know about user ses-
sions. Therefore, we need to find our own way to identify a user and associate session
data (that is, all the data you want to store for a user) with that user. We use the term
session for an instance of a user visiting a site where one or more pages are viewed. For
example, a typical online shopping session might include putting an item into the
shopping cart, going to the checkout page, entering address and credit card data, sub-
mitting the order, and closing the browser window.

The good news is that there’s more than one way to manage sessions. The bad news
is that no way is perfect. Let’s first sort out the ways that don’t work, even if they might
seem to be good choices.

At first, the typical PHP programmer tries to ignore the problem and find a
workaround for it. The obvious workaround is to store all data on the client instead of
on the server. This leads to forms with a lot of hidden fields or very long URLs. It
becomes impractical with more than two files and more than one variable to save. An
only slightly more intelligent method is to use cookies to store all information on the
client side.

Data shouldn’t be stored on the client side for several reasons:

= You lose control over the data—as long as the user doesn’t return to your site,
you can’t access the data. And worse, that data may be manipulated when you
get it back. Ninety percent of all Web site defacing and breakings come from
applications accepting tampered data from the client side and trusting that data.
Do not keep data on the client. Do not trust data from the client.

= If you use GET/POST, the storage isn’t persistent across sessions.
= If you rely exclusively on cookies, you have a problem because some users won'’t
accept cookies—they simply disable cookies in their browsers.

= The data is hard to maintain because you need to save all data on every page.
Each variable needs to be URL-encoded, added to a form as a hidden field or
added to the URL, or saved as a cookie. This is difficult for a single variable such
as the session ID, let alone dozens of variables!

HTTP and Sessions

Thus, the data needs to be stored on the server. Where exactly you store it isn’t all that
important; it can be in a relational database management system (RDBMS), plaintext
file, dBASE file, etc. Because a Web application generally already uses a relational data-
base such as MySQL, this should be the preferred storage medium.

To associate the data with a user, you need a session identity number—a key that ties
the user to his data. But, as mentioned earlier, HTTP lacks a mechanism to identify
users. What should you use, then, to brand the user?

One idea that may come to mind immediately is to use the user’s IP address. While
this approach sounds logical at first glance, the associated problems disqualify it from
being used:

= Many ISPs force dial-up users to use proxy servers; of course, $REMOTE_ADDR will
show the IP of the proxy. If two AOL users try to use your Web application at
the same time, things would get messed up.

= Some ISPs (for example, cable access providers) change their users’ IP addresses
once in a while to prevent them from running Web servers.

= Last but not least, the user could decide to close his Internet connection, go
for coftee, and return 15 minutes later to your online shop (with a different IP,
of course).

After you accept the fact that there’s no generic way to identify the user with some
predefined magic number, the only solution left is to create a session ID of your own
and pass it from page to page. (“How?” you ask. Read on, we provide details a bit
later.) This ID must be very random, or your users will try to predict it and take over
other sessions. If the ID is linear, for example a normal number (page.php3?1ID=5), you
can bet that one user will try to open page.php3?ID=6. It may only be embarrassing if
normal users can see each other’s shopping carts, but it becomes a very dangerous
security threat when hackers take over other sessions to steal credit card numbers or
produce fraudulent orders.

PHP has a built-in unigid() function, but because it’s based on the system time, it’s
not secure enough to be used for a session ID. However, you can combine it with a
hash function and rand() to construct a truly random string with 2" possible
elements:

srand((double)microtime()*1000000); // Seed the random number generator
$session_id = md5(unigid(rand())); // Construct the session ID

Accessing the User's IP Address
You can access the user's IP address from the environment variable $REMOTE_ADDR. Use phpinfo() to
get a list of all available environment variables.

125

126 Chapter 4 Web Application Concepts

Anyone who tried to crack this would have to perform a brute force attack over all
possible elements; the attacker would have to find a valid session ID from
340,282,366,920,938,463,463,374,607,431,768,211,456 possible values. Cryptoanalysts
Van Oorschot and Wiener developed a theoretical search machine for MD5 and esti-
mated in 1994 that such a machine (estimated cost: $10 million) would take 24 days
on average to crack an MD5-encrypted message.”

If this worries you, you should consider disconnecting your server from the
Internet.

By the way, md5 (uniqid())—the same construct from above without a rand()
call—would not be sufficiently random; because uniqid() is based on the system time,
it can be guessed if the hacker learns the local system time of the server. The space to
be searched is then considerably less than 2.

Session ID Propagation with Cookies

Now the only remaining issue is making the session ID available to all pages of your
application. One way to do it is by setting a cookie containing the ID. If you want to
be able to identify a user over multiple visits, using cookies is the only possibility.
Unfortunately, a percentage of your users may have turned off cookies in their
browsers (some estimates show figures of up to 20%). Depending on your target audi-
ence, it may be acceptable to redirect these users to a help page explaining how to
enable cookies.

Passing the session ID with cookies is by far the easiest method for the developer.
Except for setting the cookie, nothing needs to be done by your application.

Manual URL Rewriting

You can also use manual URL rewriting for session ID propagation. This means that
you pass the session ID via GET/POST or you “hide” it in the URL.You need to alter all
frame, form, and a HTML tags to include a reference to your ID:

// A frame source definition
printf('<frame src="page.php3?session_id=%s">', $session_id);

// A hidden form field
printf('<input type="hidden" name="session_id" value="%s">', $session_id);

/] A normal link

printf('Link', $session_id);
If you have image maps, inline frames, or JavaScript redirects in your application, you’ll
also need to alter those.

URL rewriting has several drawbacks:

= It introduces a considerable amount of additional work for you as developer. You

have to manually add the session ID to all links. If you forget a single link, the
user’s session will be lost.

HTTP and Sessions

= It reveals that your pages are generated dynamically, and some search engines
will refuse to index the pages at all. Other search engines will cut everything
after the question mark from the URL.

= The session ID will be added to users’ bookmarks and printouts. We even know
of articles in technical journals that have the session ID of a Web site included
as part of a reference. From a usability point of view, it’s harder for users to
manually alter the URL to find specific resources on a site.

= The session ID is logged in proxy servers and shows up in the HTTP_REFERER
CGI environment variable for other sites.

Dynamic Paths

Let’s see if we can avoid some drawbacks of URL rewriting. For a start, you can add
the ID to your URL in the Amazon.com way (see Figure 4.1) to make it look like
http://server.com/page.php3/<session-id>. With this method, the session ID is part
of the path to the script, and the URL looks like a static page to search engines and
spiders. This works because the Web server knows that page.php3 is a script, and stops
looking further in the URL for files. But this way the session ID is not automatically
available in your PHP script. You need to parse the path yourself to get access to it:

function session_start_from_path()

{
global $HTTP_HOST, $REQUEST URI;

ereg("/([0-9a-z]{32})", $REQUEST_URI, $regs);
$session_id = $regs[1];

if (!isset($session_id) || empty($session_id))
{
srand((double)microtime()*1000000) ;
$session_id = md5(unigid(rand()));

$destination = "http://$HTTP_HOST$REQUEST URI/$session_id";
header("Location: $destination");

}

session_id($session_id);
session_start();

}
All other drawbacks of URL rewriting still apply to dynamic paths, though.

127

128 Chapter 4 Web Application Concepts

3 Amazon. com~Earth's Biggest Selection - Netscape

Fie Edt View Go Communicalor Help
H “§ 7 Bookmarks Ji Netsite: [rttp: 7w smazon com/esec/okidos/substhome/Moms himl/N2-5234264 5313468 =] @7 what's Related E
T

@ | vouraccount | HELP

WELCOME J: D43 MusIC VIDEO | TOYS & GAMES | ELECTRONICS | e-CARDS | AUCTIONS

HOWTO GIFT OUR SITE
ORDER SERVICES GUARANTEE GUIDE COMMUNIDY
wWednesday, September 29, 1999
All Products 7] Sz amazo“'com
@ Hello, Tobias Ratschiller. (If you're not Tobias Ratschiller, click hers.)
We have recommendations for you in Books, Music, and Yideo,
Search of the Day:
tongue cleaner . .
Sl I(r; I?nné(s what's Hot in Auctions
nly Gonnect ® The Blair Witch
It was in 1980 that Tim Berners-Lee first began 5~
* Books fiddling with a nascent version of the World » Bokéman
s
Besteallars, Comauter Weaying Wlde Web. Almost two decades later, his « Nora Roberts
Kids _Busm‘es_Ls ! weweb invention has transformed commerce,
. Niusic communications, and our very notion of
New Releases. Ta @ connectivity--a revolution he chronicles to Amazon.com 100 Hot
Sellers, Claseical fascinating effect in Weaving the Weh. Coto BOOKS
50und€ra:ks.” ! Books Updated Hourly
* Video .
DVDs, Top Sellers, New In Music 1. Harry Potter and the
Releases, Kids & Live Loreena Prisoner of &zkaban
Family... On the two-disc benefit package Live in by 1. K. Rowling
* Auctions Paris and Toronto, Loreena McKennitt . Harry Potter and the
| (== [Document: Dane e e

#stan| | EPoste. |[FfAma... | (CxMet.| &1Ency..| 5] Explo.. | Fladeb.. | Eaoua..| || o4 &1 23 é B ABGS e

Figure 4.1 Amazon.com hides the session ID in the URL.

Dynamic Paths with mod_rewrite

You can avoid at least the hassle of manually encoding the session ID with a clever
trick. What if the URL looked like this?

http://server.com/<session-id>/page.php3

The browser would automatically send the session ID on every request, treating it as
part of the directory. Of course, if you try to use this format as is, you'll only get a File
Not Found error, because there’s no directory that looks like the session ID. We need a
way to remove the session ID from the path before the Web server actually sees the
URL.

This is where mod_rewrite comes into play. This is an Apache module that applies
complex regular-expression transformations to a URL before passing it to the Apache
server. Using mod_rewrite, we can simply strip out the session ID from the URL; this
is an internal change to the URL, and only Apache will see it—the client won't.
Apache will see a normal request without session ID, while it’s still available in the
usual variables for PHP.

Getting mod_rewrite
The mod_rewrite module is not compiled into Apache by default. Please see Apache’'s INSTALL file for
instructions on how to compile Apache with this module.

HTTP and Sessions

An URL like this:
http://www.server.com/b6ac8ca8e453cdc43e6078abfo44cdb5/script.php3

can be rewritten with this rewriting rule:

RewriteEngine On

RewriteBase /

RewriteRule “[0-9a-z]{32}/(.+) /$1
The first line tells mod_rewrite to start up. The second line explicitly sets a base direc-
tory, which is only needed when using mod_rewrite in a local context, for example in
an .htaccess file. The third line finally defines the regular expression used for the
URL rewriting. Our expression simply strips out the session ID from the URL.

To start the session, we use a function very similar to the one we wrote earlier.
Only the initial redirect is different:

function session_start_from_rewrite()

{
global $HTTP_HOST, $REQUEST URI;

ereg("/([0-9a-z]{32})", $REQUEST_URI, $regs);
$session_id = $regs[1];

if (!isset($session_id) |, empty($session_id))
{
srand((double)microtime()*1000000) ;
$session_id = md5(unigid(rand()));

$destination = "http://$HTTP_HOST/$session_id$REQUEST URI";
header("Location: $destination");

}

session_id($session_id);
session_start();
}

During all requests, the browser will assume the URL with the session ID included,
and therefore send the session ID automatically with every request. This frees you from
the hassle of rewriting all links yourself. That is, as long as you use only relative links in
your application; if you use absolute URLs (for example, /directory/script.php3),
you still need to rewrite those manually.

Dynamic Paths with PHP 4.0

Automatic URL rewriting is one of the very cool new features of PHP 4.0.To enable it,
you need to configure PHP with --enable-trans-id and recompile it. Then the
session ID in the form <session-name>=<session-id> will be added automatically to
all relative links within your PHP-parsed pages.

Not for High-Performance Sites

While this is a handy feature, it should be used with caution on high-performance sites. PHP has to look
at each individual page, analyze it to see whether it contains relative links, and eventually add the ID to
the links. This obviously introduces a performance penalty. We recommend using mod_rewrite or DNS
tricks instead.

129

130 Chapter 4 Web Application Concepts

Details on session ID propagation in real life will follow a bit later. First, we’d like to
show you another way of session ID propagation, arguably the most geeky method.

DNS Tricks

The need to tag all links in an application with the session ID can be really annoying.
PHP 4.0 has a way to do it automatically, but it may be a severe performance hit on
larger sites, and it doesn’t work with PHP 3.0.

‘We may have a solution for you.

Up front, the caveats:You need to be able to change the DNS record for your
server, and the server you want to use for this kind of session ID propagation needs its
own, static IP. Name-based virtual hosting won’t work here.

You meet these requirements? Great. If you're proficient with name servers, you
may know that wildcard entries can be used in DNS configuration. These entries
usually map any arbitrary hostname to a specific IP; for example, we’ve got this entry
to direct requests for everything below phpwebdev.com to the IP 194.242.199.228:

* . phpwebdev.com IN A 194.242.199.228

A request for http://this.is.one.cool.domain.phpwebdev.com will be redirected to

the specified IP. Since the hostname is arbitrary, Apache must be configured to handle
the IP—as opposed to name-based virtual hosting, where the hostname must be fixed
and known. Our Apache configuration looks like this:

<VirtualHost 194.242.199.228>
ServerAdmin tobias@dev.phpwebdev.com
DocumentRoot /home/www/htdocs
ServerName phpwebdev.com
</VirtualHost>
Our trick will also work fine if Apache’s main server is bound to this address.
The scope of this is of course to encode the session ID in the hostname itself. On
the first request to the application, the session ID is created, and the client is redirected
to the new URL containing the tagged hostname, which will look like this:

355e1bce8828d4fb5c83c1e35ad02caa. phpwebdev.com

The advantage is clear: As long as you use relative links in your application, it’s no
longer necessary to bother with any manual URL rewriting!

We have modified the earlier session start function to extract the session ID from
the hostname:

function session_start_from_host($host)

{
global $HTTP_HOST, $PHP_ SELF;

ereg("([0-9a-z]{32})\.", $HTTP_HOST, $regs);
$session_id = $regs[1];

HTTP and Sessions

if(!isset($session_id) || empty($session_id))

{
srand((double)microtime()*1000000) ;
$session_id = md5(unigid(rand()));
$destination = "http://$session_id.$host$PHP_SELF";
header("Location: $destination");
}

session_id($session_id);
session_start();

A Compromise for Real Life

You've learned several ways of session ID propagation, which all work for real-life
scenarios more or less efficiently. There may be some other methods—for example,
embedding all your pages within a single frame and using JavaScript in the embedded
pages to access the main frame’s session ID—but as they rely on JavaScript, special
layout setups, or other kludges, they usually aren’t applicable in professional Web
applications.

In real-life applications, we generally recommend using a combination of cookies
and either dynamic paths or DNS tricks. If available, encoding the session ID in the
hostname saves some work for the developer.

In the current session, the user’s session ID is encoded into the URL or the host-
name. Using the PHP 4.0 automatic URL rewriting is also an option, if the site won’t
get too much traffic. This works with all browsers, with cookies or without—ensuring
that you reach the broadest user base possible. If the user has cookies enabled, the ID is
also stored as a cookie. The next time the user visits, he or she will be identified auto-
matically through the cookie, and you can welcome him or her with a personalized
index page, as Amazon.com does. If the browser lacks cookie support, the user has to
log in with a username/password—but afterward, he or she can use the site as any
other visitor.

Summing up, proper session management does the following:

= Stores session data on the server.
= Uses a random session ID to identify a user.

= Saves the session ID (and only the session ID) on the client side using cookies,
GET/POST, the script path, or DNS tricks.

= Ideally, automatically uses other means for session ID propagation if the user has

disabled cookies.

131

132 Chapter 4 Web Application Concepts

PHP’s Built-in Session Library

Luckily, PHP 4.0 has basic session management built in, as shown in Listing 4.1. While
it’s very easy and straightforward to use and may suffice for your needs, it lacks some
of the advanced features that the PHPLib provides. Because the PHPLib also provides
modules for user authentication, permission management, and a database abstraction
layer, it’s still a very important library, and is covered in Chapter 6, “Database Access
with PHP”

Listing 4.1 A basic example of using PHP’s built-in sessions.

/] Start the session
session_start();

// Init the counter
if(!isset($counter))
{

$counter = 0;

}

/] Output session ID and counter
printf("Our session ID is: %s
", session_id());
print("The counter value is: $counter");

// Increment the counter
$counter++;

// Register our session variable
session_register("counter");

This example displays the session ID and a counter that increments each time you
access the page. Of course, this example is different from a normal page counter—the
session (and thus the counter) is tied to one specific user. With PHP’s default configu-
ration, the session cookie has a lifetime of 0; if you close the browser and reopen it,
the counter restarts from zero, as the cookie has been deleted.

Let’s take a closer look at the PHP 4.0 session functions. PHP’s session management
library offers the characteristics described earlier:

= [t stores session data on the server. Because the library uses different storage
modules, you can keep the data in plaintext files, shared memory, or databases.
This reflects exactly what we’ve explained about storage media: Where exactly
data is being kept isn’t really important (well, as long the performance of the
medium is sufficient).

= It uses a random session ID to identify a user.

= [t saves the session ID (and only the session ID) on the client side using cookies,
GET/POST, or the script path. (The PHP library provides all of these methods; we
show how to use them a little later.)

= If the user has disabled cookies, the application can use other means of session
propagation.

HTTP and Sessions

A Session’s Life

A PHP 4.0 session is started by calling session_start() or implicitly as soon as you
register a session variable with session_register(). On startup of the library, PHP
checks whether a valid session ID exists by performing the following actions:

1. If track_vars is set to false, the library checks the global namespace for a
session ID. If one is found, the library won’t send a cookie with the session
ID anymore, but it will also define the SID constant.

2. If track_vars is enabled and no session ID has been found in the global name-
space, the $HTTP_COOKIE_VARS array is checked for a session ID. If one is found,
no cookie will be sent, and the SID constant won’t be defined.

3. If no session ID has been found yet, the $HTTP_GET_VARS and $HTTP_POST_VARS
arrays are checked for a session ID. If one is found, the SID constant will be

defined.

4. If no session ID has been found yet, the path ($REQUEST_URI) is parsed for a
string in the form <session-name>=<session-id>. If found, the SID constant will

be defined.

5. If the client request specified an external HTTP referrer (from a non-local site)
and extern_referer_check (note the single “r”) is enabled in the PHP configu-
ration, the session ID is refused and marked as invalid. This introduces some
additional security, as it prevents users coming from other PHP sites taking over
a session (which is still highly improbable, however, due to the algorithm used
for the generation of the session ID).

Generally, the SID constant will be defined unless the session library knows for sure
that the client supports cookies; in other words, unless the session ID is found in the
$HTTP_COOKIE_VARS array.

If no session ID has been found with all these checks, or if it has been rejected, it
means that a new session should be started and a new session ID is created.

If a valid session ID exists, the frozen variables of that session are reactivated and
reintroduced to the global namespace. It’s as easy to handle session variables as it is to
handle GET/POST variables: If you register a variable named foo, $foo is made accessible
as a global variable automatically after calling session_start(). It’s also added to
the global $HTTP_SESSION_VARS array when track_vars is enabled. Because the
serialize() function was improved in PHP 4.0, it’s also feasible to treat objects
(classes) as session variables.

Enable track_vars and register_globals
You need to have track_vars and register_globals enabled in your PHP configuration to use all
functionality of the session-management library.

133

134 Chapter 4 Web Application Concepts

All variables you want to preserve across page requests need to be registered to the
session library with the session_register() function. Note that this function takes
the name of a variable as argument, not the variable ifself. To register the variable $foo,
you'd use this:

session_register("foo");

This code:

session_register($foo);

would produce something meaningful only if $foo was the name of another variable:

$bar = "This is a string";

$foo = "bar";

session_register($foo);

You can use session_unregister() to remove variables from the session library.

As with real life, it’s not always easy to tell when a session’s life ends—unless it’s a
violent death, forced by session_destroy (). If the session is to die of old age, difterent
configurations need to be taken into consideration. If you propagate the session ID via
cookies, the default cookie lifetime is @, meaning that it will be deleted as soon as the
user closes the browser. You can influence the cookie’s lifetime with the configuration
value lifetime. Because the server doesn’t know whether the cookie still exists on the
client side, PHP has another lifetime variable that determines how long after the last
access to this session the data should be destroyed: gc_maxlifetime. But performing
such a cleanup of old sessions (called garbage collection) on every page request would
cause considerable overhead. Therefore, you can specify with what probability the
garbage collection routine should be invoked. If gc_probability is 100, the cleanup
will be performed on every request (that is, with a probability of 100%); if it’s 1 as by
default, old sessions will be removed with a probability of 1% per request.

If you don’t use cookies but pass the session ID via GET or POST instead, you need
to pay special attention to the garbage-collection routines. People might bookmark
URLs containing the session ID, so you need to make sure that sessions are cleaned up
often—if the session data still exists when the user accesses the page with the session
ID at a later time, he’ll simply resume the previous session instead of starting with a
new session, which may not be your intention. On the other hand, don't set the
gc_probability too high, especially if you're using file-based session storage. Running
a garbage collection in this case involves stat()ing all session files, checking for the
last modified time of these sessions. That’s a very expensive operation and should not
be started too often. Usually a gc_probability of 5 to 10 should be appropriate,
especially if you destroy sessions when you're finished with a transaction (for example,
when the user checks out of your shop).

HTTP and Sessions

Storage Modules

To read and save session data, PHP uses storage modules, thus abstracting the back end
of the library. Currently, three storage modules are available: files, mm, and user. By
default, PHP uses the files module to save the session data to disk. It creates a text
file named after the session ID in /tmp. In the previous example, the content of this
file would look like this, which is a serialized representation of the variable:

counter|i:4;

You probably won't ever need to access this file directly.

If you need higher performance, the mm module is a viable alternative; it stores the
data in shared memory and therefore isn’t limited by the hardware I/O system. The
last module, user, is used internally to realize user-level callback functions that you
define with session_set_save_handler().

The real power lies in the capacity to specify user callbacks as storage modules.
Because you can write your functions to handle sessions while still being able to rely
on the standardized PHP API, you can store sessions wherever and however you
want—in a database like MySQL, XML files, on a remote FTP server (okay, the latter
wouldn’t make much sense, but you get the idea).

The function session_set_save_handler() takes six strings as arguments, which
must be your callback functions. The syntax of the function is as follows:

void session_set_save_handler(string open, string close, string read,

=string write, string destroy, string gc)

Serializing Data

Serializing means the transformation of variables to a byte-code representation that can be stored any-
where as a normal string. Without this feature, it wouldn't be possible, for example, to store PHP arrays
into a database. Serializing data is very useful for preserving data across requests—an important facet
of a session library. You can use serialize() and deserialize(), but note that in PHP 3.0 these
functions don't work correctly on objects (classes); class functions will be discarded.

Excluding Arguments
To leave out one argument, pass an empty string ("") to session_set_save_handler().

135

136 Chapter 4 Web Application Concepts

The functions are defined as follows:

bool open(string save path, string sess_name)

This function is executed on the initialization of a session; you should use it to
prepare your functions, to initialize variables, or the like. It takes two strings as
arguments. The first is the path where sessions should be saved. This variable can
be specified in php.ini or by the session_save_path() function—you can use
this variable as a wild card and use it for module-specific configuration. The sec-
ond argument is the session’s name, by default PHPSESSID. The open() function
should return true on success and false on error.

bool close()

This function is executed on shutdown of a session. Use it to free memory or to
destroy your variables. It takes no arguments and should return true on success
and false on error.

mixed read(string sess_id)

This important function is called whenever a session is started. It must read out
the data of the session identified with sess_id and return it as a serialized string.
If there’s no session with this ID, an empty string "" should be returned. In case
of an error, false should be returned.

bool write(string sess_id, string value)

When the session needs to be saved, this function is invoked. The first argument
is a string containing the session’s ID; the second argument is the serialized rep-
resentation of the session variables. This function should return true on success
and false on error.

bool destroy(string sess_id)

When the developer calls session_destroy(), this function is executed. It
should destroy all data associated with the session sess_id and return true on
success and false on error.

bool gc(int max_lifetime)

This function is called on a session’s startup with the probability specified in
gc_probability. It’s used for garbage collection; that is, to remove sessions that
weren’t updated for more than gc_maxlifetime seconds. This function should
return true on success and false on error.

The example in Listing 4.2 puts the user callback functions into action, defining a
storage module to save session data to a MySQL database. (The full example, including
the necessary MySQL table schema, is included on the CD-ROM accompanying this
book.) Because session_set_save_handler() currently accepts only simple functions
and no class functions, we’ve used good old structural programming instead of a class.
Because inheritance or multiple instances wouldn’t make sense for this type of code

anyway, it’s not a big loss.

HTTP and Sessions

Listing 4.2 A MySQL storage module for the PHP 4.0 session library.

$sess_mysql = array();
$sess_mysql["open_connection"] = true;
=// Establish a MySQL connection on session startup?

$sess_mysql["hostname"] = "localhost"; /] MySQL hostname

$sess_mysql["user"] = "root"; /] MySQL username

$sess_mysql["password"] ="' /] MySQL password

$sess_mysql["db"] = "book"; /| Database where to store the
=sessions

$sess_mysql["table"] = "sessions"; /] Table where to store the
=sessions

function sess_mysql_open($save_path, $sess_name)

{

}

global $sess_mysql;

/| Establish a MySQL connection, if $sess_mysql["open_connection"] is true
if ($sess_mysql["open_connection"])

{
$link = mysql_pconnect($sess_mysql["hostname"], $sess_mysql[“user"],
=$sess_mysql["password"]) or die(mysql_error());

}

return(true);

function sess_mysql_read($sess_id)

{

}

global $sess_mysql;

/] Select the data belonging to session $sess_id from MySQL session table
$result = mysql_db_query($sess_mysql["db"], "SELECT data FROM

=" .$sess_mysql["table"]." WHERE id = '$sess_id'") or die(mysql_error());

// Return an empty string if no data was found for this session
if (mysql_num_rows($result) == 0)
{
return("");
}
/| Session data was found, so fetch and return it
$row = mysql_fetch_array($result);
mysql free result($result);

return($row["data"]);

function sess_mysql write($sess_id, $val)

{

global $sess_mysql;
/] Write the serialized session data ($val) to the MySQL session table

continues

137

138 Chapter 4 Web Application Concepts

Listing 4.2 Continued

$result = mysql_db_query($sess_mysql["db"], "REPLACE INTO
=-".$sess_mysql["table"]."VALUES ('$sess_id','$val', null)")
=or die(mysql_error());

return(true);
}
function sess_mysql_destroy($sess_id)
{
global $sess_mysql;
// Delete from the MySQL table all data for the session $sess_id
$result = mysql_db_query($sess_mysql["db"], "DELETE FROM
=-".$sess_mysql["table"]." WHERE id = '$sess_id'") or die(mysql_error());
return(true);
}
function sess_mysql_gc($max_lifetime)
{
global $sess_mysql;
// 0ld values are values with a Unix less than now - $max_lifetime
$old = time() - $max_lifetime;
/] Delete old values from the MySQL session table
$result = mysql_db_query($sess_mysql["db"], "DELETE FROM
=-".$sess_mysql["table"]." WHERE UNIX_TIMESTAMP(t_stamp) < $old") or
=die(mysql_error());
return(true);
}
/*
* Basic Example: Registering above functions with session_set_save_handler()
*
$foo = 10;
session_set_save_handler("sess_mysql_open", "", "sess_mysql_read",

="sess_mysql _write", "sess_mysql_destroy", "sess_mysql_gc");
session_start();

session_register("foo");

echo "foo: $foo";

$foot+;

*

*/

HTTP and Sessions

Page Caching

The session library also allows you to control how pages are cached. This is done via
the HTTP Cache-Control directives. In the PHP configuration, the cache_limiter
directive can be set to nocache, private, or public. As discussed in Chapter 6, this

is very similar to the behavior of the PHPLib (but note that the PHPLIib uses just
no instead of nocache).

Page caching is set to nocache by default. This prevents caching at all, and is also the
standard behavior of all PHP pages, as you may know. For dynamically generated
pages, this is usually the preferred method, since these pages will often differ from
request to request. However, you may want to rethink this strategy for certain parts of
your application that don’t change often—your server hardware will thank you for it.
The output header will look like this:

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-cache

Pragma: no-cache
Setting cache_limiter to private will allow browsers to cache the pages, but
not proxies or other gateway applications. Note that this differs from the
proxy-revalidate directive; in the latter case, the proxy is allowed to keep the
content of the page to issue a revalidation instead of a full retrieval. The generated
HTTP headers will look similar to these:

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: private, max-age=10800

Last-Modified: Thu, 03 Feb 2000 15:56:11 GMT
The last possible value, public, allows full caching by both the client and proxies. Be
careful when using the public cache option: Pages generated with this setting may be
available to third-party users who have access to proxies.

When using public caching, the cache_expire PHP configuration directive will be
taken into account. This directive specifies the number of seconds after which the
cache will expire. The generated headers could look like this:

Expires: Thu, 03 Feb 2000 18:56:11 GMT
Cache-Control: public, max-age=10800
Last-Modified: Thu, @3 Feb 2000 15:56:11 GMT

PHP 3.0 Sessions

Because the PHP 4.0 sessions API is nice and intuitive to use, we wanted to have that
for PHP 3.0, too. Having a consistent session interface for both versions would be
great, we thought—and for some small projects you just don’t want to use the
PHPLib. So we had a closer look at sessions.c and ported it over to native PHP 3.0.
‘While we didn’t preserve some internals, such as the algorithm used for the generation
of the session ID, we tried to make the API 100% compatible to PHP 4.0. Some limi-
tations obviously do exist: Automatic URL rewriting isn’t available, for example. But if

139

140 Chapter 4 Web Application Concepts

you keep the documented differences in mind, it should be possible to use our library
as a drop-in replacement of the PHP 4.0 session functions. The full source code can be
found on the CD-ROM.

Our port can also help you to understand in detail how the PHP internal session
library works. The session_start() function, for example, mirrors the original C
function very closely.

Security Considerations

Example 1. In early 1999, we performed a Web site audit for a leading online job data-
base. During the analysis, we discovered a security issue that left us speechless. The
‘Web site had an associated online shop where visitors could buy books related to the
topic of job hunting. The shop had been developed by an independent contractor who
had already built several other online stores based on his Perl scripts and had made
available on his Web site a demo including significant parts of the source code. Each
time a visitor ordered an item, a plaintext file was generated, containing all order
information, even credit card data—all unencrypted. And not only that, the files were
stored on a publicly visible directory on the Web server—*“for the convenience of the
Web site maintainers,” as he told us. This directory was “protected” only by the fact
that it was declared as not browseable in Apache’s configuration. Because the filenames
followed a standard naming convention in the form “yyyy-dd-mm-hh-mm-ss.txt,” it
would have been a no-brainer for a hacker to write a script to search for files.

Example 2. Network Solutions, for a long time the only domain registrar, had the
idea in September 1999 to give a free Web mail account to their premium customers.
They created a username and a password for each account and mailed it to the respec-
tive customer. The username consisted of the customer’s last name (“doe”)—and the
password was the same as the username except that a trailing “nsi” (“doensi”) was
added! For over 24 hours you could log into the system by entering other customers’
“passwords.” You could change the password, read mail sent to that account, and even
send mail in the name of that customer.

Both security problems were caused not by flaws inherent in the programming
language used, but by improper programming. PHP itself is very secure—we have
never heard of holes like ASP’s : : $DATA bug. This issue, discovered in June
1998, allowed any user to view the source code of ASP scripts over the Web,
simply by appending the string : : $DATA to the file’s URL (for example,
www.server.com/script.asp: : $DATA)—a software developer’s nightmare. An earlier
‘Windows-only security issue allowed you to access the source by specifying a URL
like www. server.com/script.asp. (note the trailing dot), and after the ::$DATA bug,
on some versions of Personal Web Server for Windows you could use
wWWw.server.com/. / to get access to the entire hard disk, not just the Web server’s
document root tree.

Security Considerations

Security has to be taken into consideration in the very first step of using a scripting
language—its installation. As you know, PHP can be installed as a server module
(Apache module, ISAPI/NSAPI plug-in) or as stand-alone CGI program.

If you install it as a server module, it’s part of the underlying Web server and
inherits its security. There are no known PHP-specific attacks for this kind of setup. Of
course, you still need to have a secure server, but that’s too broad a topic to cover here.

CGI programs, on the other hand, have been famous for a wide variety of possible
attacks—both intrusion and denial-of-service attacks. Traditionally, the most serious
problems arise when putting a script interpreter into the cgi-bin directory of a Web
server. With some script interpreters, users would be able to execute any command
through it. PHP tries to prevent some of these attacks. If invoked from the Web, it dis-
cards command-line parameters passed by the CGI interface—requests such as
http://server.com/cgi-bin/php?etc/passwd will fail.

Unfortunately, another attack directly related to flaws in the CGI specification is
still possible:You can access any file below the Web server’s document root, even if the
directory is protected by HTTP-AUTH (an .htaccess file), just by calling through via the
PHP interpreter: www.server.com/cgi-bin/php/secret-directory/file.html would
allow you to view file.html even if secret-directory is protected by an .htaccess
file. If you’re using Apache, enable --enable-force-cgi-redirect when compiling
PHP to avoid this problem. Please refer to the installation section in the PHP manual
for more detailed information on this topic.

Of course, choosing a secure installation is only the first step. A good programmer
will keep an eye on security throughout the development process. There are so many
possible risks that we can’t possibly cover them all within this chapter. Instead, we’ll try
to give you some generally applicable advice.

Don’t Trust the Web

All data coming from the Web is insecure and should be validated by your application.
For example, there’s no guarantee that your script is invoked from its associated form
interface—users could bypass the HTML form and call the script directly, possibly
specifying parameters via their own GET or POST.

Validating form data is one of the most tedious tasks a Web application developer
has to do in his or her daily work. Basic checks can be automated with the routines of
the library featured in Chapter 5, “Basic Web Application Strategies.”” For more com-
plicated validation, we haven’t found a generic way yet—so we do it manually. Such
scripts follow the typical logic outlined in Chapter 5, which we call the PHP
Normal Form.

141

142 Chapter 4 Web Application Concepts

Executing System Commands

Pay special attention to security when working with files or executing system com-
mands. Imagine a typical source-viewer script that takes a filename as argument and
displays the file in colored mode:

show_source($file);

You intend the script to be called with script.php3?file=script.php3, but what if
somebody calls it with script.php3?file=/etc/passwd? Right—you have a problem
because you trusted variables coming from the Web to be in a certain range (for
example, the current directory). It’s absolutely necessary to enforce such assumptions
on the server, for example by using this code snippet instead:

show_source (basename ($file));

Let’s look at another example, a directory viewer that we found on the Web. (Listing
4.3 shows a slightly modified and shortened version.) The author, Marcus Xenakis,
kindly gave us permission to include it here.

Listing 4.3 Directory browsing with security risks.

print("<pre>");

exec("ls -la $dir", $lines, $rc);
$count = count($lines) - 1;

for ($i = 1; $i <= $count; $i++)

{
$type = substr($lines[$i], 0, 1);
$name = strrchr($lines[$i], " ");
$name = substr($name, 1);
$dire = substr($lines[$i], 0, strpos($lines[$i], $name));
printf('"', ($type == d) ? "blue" : "black");
print("$dire");
if ($type == "d")
{
if ($name == "." or $name == "..")
{
print("$name
");
}
else
{
printf("$name
",
=empty ($dir) ? $name : "$dir/$name");
}
}
else
{
printf("$name
",
—empty ($dir) ? $name : "$dir/$name");
}
}

print("</pre>");

Security Considerations

While he confirmed our assumption that the script should be placed in a trusted envi-
ronment, it shows some techniques that would make it a dangerous security leak if
naive users placed it into a publicly accessible directory. For a start, invoke it with
Directory_Viewer.php32dir=/etc. Nice, isn’t it? You can browse any directory on the
system from which PHP is allowed. But that’s not enough: You can execute any com-
mand using that little script and easily gain root access to the server hosting it.

The key section is this line:

exec("ls -la $dir", $lines, $rc);

The variable $dir, provided the user, is passed directly to exec().As you may know,
you can concatenate shell commands with ;—so what do you think will happen
when $dir is equal to "/etc; cat /etc/passwd"? If you want to pass this as an argu-
ment, you'd need to URL-encode the string, of course, so the script would be called

like this:

Directory_Viewer.php3??dir=/etc%3B+cat+%2Fetc%s2Fpasswd

And yes, it would display the contents of /etc/passwd. Instead of the cat command,
you could execute any other command, for example fetch, to get and install a Trojan
horse from your own server.

The remedy for this specific problem is to pass the $dir variable through
EscapeShellCmd (), thus masking all critical characters that could be used to trick the
shell to execute concatenated commands. Also, it may be a good idea to restrict it to
list only subdirectories:

$secure_dir = str_replace(".", "", $dir);

$secure_dir = $DOCUMENT_ROOT.dirname ($PHP_SELF)."/$secure_dir";
$secure_dir = EscapeShellCmd($secure_dir);

The principle remains: Never trust variables provided by users. Of course, this is valid
for all scripting languages, not just PHP. The same hole is present in ASP using the
FileSystem object, or in Perl when executing user-defined commands.

Tainted Variables

We must stress this: All data coming from the user space is to be treated as tainted,
untrustworthy, contaminated, potentially evil. The Internet is outside the application
space in this case; in trust management, this is called a trust boundary. The

application space is a trusted environment; the Internet is not. Passing data from

your program to the client doesn’t need much special attention (given that it gets its
data from trusted systems—for example, the database system must be on an equal trust
level with the application itself). The only instance in which you have to take special
precautions is when you want to guarantee that data is received only by one specific
client, or that the client can be sure to retrieve the data from a specific instance (your
server). With a normal HTTP transfer, these guarantees can’t be enforced; you're
advised to use SSL or an equivalent encryption layer in such a case.

143

144 Chapter 4 Web Application Concepts

Bringing data from a lower security level to a higher level (as when importing user
variables) requires more care.You can’t assume that the supplied data meets any
requirements—not even if you supplied the data to the client in the first place. For
example, you could check data in an HTML form with JavaScript on the client side,
but you can’t assume on the server that the data is in the format you expect because
the user could have turned off JavaScript, or could have submitted the form from a
Telnet prompt. Another common error is supplying data to the user and taking it for
granted that it doesn’t get changed. For example, a page might display account infor-
mation for a user, called after the user has logged in with a query string like
script.php3?user_id=1. Of course, nothing prevents the user from changing the
variable user_id to something other than 1 and editing anyone’s data.

Many Web applications today check contents provided by one user for another
user. For example, it will be hard to find a message board allowing you to enter
<script> tags or similar HTML code. For a developer, an easy mistake is limiting
checks to only this kind of data—and neglecting data that’s intended to be used only
by the client itself. After all, why would a user enter malicious code that only the user
will see?

The point is that “injecting” script or HTML code into the application is a severe
trust violation. The malicious code is executed with the application’s security level: It
appears to be coming from the application itself.

Often, users can be tricked into seeing content that originally was only for another
user’s eyes. Let’s construct a search engine, phpVista. A user submits a keyword, and the
engine searches the Web for it. As you plan it, you imagine that only the user who
wants to actually search will see the results, so you don’t bother encoding special char-
acters into the keywords. A user could enter <script>alert("Hello World")</script>
as a keyword, and would actually get a JavaScript pop-up message in the browser (if
JavaScript is enabled). As long as users enter the search terms themselves, this isn’t
much of a problem; the worst case would be that they crash their own browsers with
malicious JavaScript.

But wait. Why shouldn’t users point others to the results for a certain search they
find useful? For example, on phpWizard.net you can find a form that automatically
searches Amazon for all PHP-related books.

Now the issue gets hairy. An attacker can have a link to search results for the term
<script>alert("Hello World")</script> on his or her public Web site. All users who
follow this link (or submit the search form) will get the infamous “Hello World” mes-
sage as a pop-up message in their browsers.You can do a lot more dangerous things
than displaying messages, though. If we extend the example a little bit, we can use
phpVista as a search engine in an e-commerce Web site, which uses proper session
management and stores the session ID in cookies. If we also increase our attacker’s IQ,
he or she drops the Hello World pop-up and uses another JavaScript instead to read

Security Considerations

the cookie information and send it to the attacker’s Web site, where he or she waits for
incoming session IDs, takes over the other users’ sessions, and buys some nice gifts for
the folks at phpWizard.net.

While we’re good at making up stories, this could have really happened: Amazon’s
product search engine didn’t properly encode tags—until two days after a related
security advisory from the CERT was released, which can be found at
www.cert.org/advisories/CA-2000-02.html.

Even if you keep all this advice in mind and check all user-supplied variables, it’s
very easy to make the wrong checks. For some applications, for example, it’s desirable to
allow certain HTML tags in data. One of these tags is the <p> tag, which allows for-
matting text in paragraphs. It can take an align attribute, which specifies the para-
graph’s alignment. To match this opening tag, on a first try you could use the regular
expression <p[/>]>. But many browsers support general scripting behavior on a wide
series of tags; a user could submit any JavaScript embedded in the onClick or
onMouseOver event of the <p> tag—and execute malicious code again.

The first step is to understand that all these threats taken together result in a very
ugly picture.You have to be really careful if you want to avoid all traps. This is also the
main reason we recommend having dedicated security consultants in an application-
development team.

Some very general hints and guidelines to minimize these risks:

= Use sessions instead of passing data from page to page on the client.

= Validate all data from user space; this may include encoding or replacing the
less-than sign (<), the greater-than sign (>), and the ampersand (&), and paying
special attention to double quotes ("), single quotes ('), and whitespace, at least
in tag attributes and attribute values.

= Make sure that your application operates in a trusted environment.

= Pay special attention to PHP’s variable order (see the next section).

PHP’s Variable Order

You know that PHP automatically makes available all GET and POST variables in the
global namespace. Did you know that you can turn off this feature in PHP 4.0?

Although the automatic introduction of all variables is one of the features that
make PHP so easy for novice users, it can be problematic in larger and more complex
applications. If you access user-passed variables from the global namespace, you can’t
be sure where they really come from: Is it GET, POST, or cookies?

If you don’t care about variable order, you accept that any user can call your script
using either GET or POST. If not a security issue, this is at least bad style—you should be
able to choose how the data is delivered to your application. Of course, PHP provides
a method to access variables from a specific namespace: If track_vars is enabled in

145

146 Chapter 4 Web Application Concepts

the HPP configuration, you can access an associative array for each namespace. The
following table shows the available arrays:

Array Name Contents

$HTTP_GET_VARS Variables from a GET request
$HTTP_POST_VARS Variables from a POST request
$HTTP_COOKIE_VARS Variables from cookies

$HTTP_ENV_VARS Environment variables, for example $SHELL
$HTTP_SESSION_VARS Session variables

$HTTP_SERVER_VARS Server variables, on our box $argc and $argv

Note that PHP 3.0 knows only the first three arrays.

Some clever project managers are known to set the PHP configuration directive
register_globals (available only in PHP 4.0) to false, to force their programmers to
use the $HTTP_*_VARS arrays.

You can also influence the order in which variables are added to the global name-
space. By default, the variables_order configuration directive is set to "EGPCB". This
tells PHP to introduce variables in this order:

1. Environment variables
GET

POST

Cookies

Built-in variables (server variables)

RAREF G

This means that if the user passes a PATH variable in the GET request, he or she would
overwrite the environment variable—newer values override previous values. By using
getenv() or by changing the variables_order directive, you can make sure that you
actually access environment variables and not user-supplied variables.

Session variables always overwrite variables coming from any other space;
because they’re coming from an already secured trust zone, this avoids a lot of’
security problems.

Don’t Reinvent Cryptography

Cryptography is the science of using mathematics to encrypt and decrypt data. It
enables you to store sensitive information or transmit it across insecure communication
channels so that it can’t be read by anyone except the intended recipient. Data encryp-
tion 1s a science of its own—don’t even try to invent your own encryption algorithms.
Use established algorithms such as RC5 or Blowfish.

Encrypting with MCrypt Functions

If you compiled PHP with the mcrypt module, a wide variety of powerful encryption and decryption
algorithms are at your disposal. The later section “The MCrypt Functions” shows how to use this module
and how to find out which algorithms are supported on your system.

Security Considerations

There are two types of encryption: symmetric encryption and public-key encryption.

Symmetric Encryption

Symmetric encryption, also referred to as secret-key encryption, uses the same key for
encryption and decryption of data. Data Encryption Standard (DES) is a common
example of this method. DES is a complex algorithm developed by IBM in the 1970s
and approved by the U.S. Bureau of Standards in 1976. While it’s relatively easy to
crack this 56-bit algorithm (the DES Challenge 111, a cracking effort sponsored by
RSA Data Security, lasted for only 22 hours until the encrypted message was deci-
phered), it can still be used to encrypt non-critical data. Some data just needs to be
“hidden” from normal system users and not be encrypted in a cryptographically secure
way—it’s a matter of cost versus benefit.

Using symmetric encryption, both sender and receiver of an encrypted message
have to know the secret key phrase (the password). If only two people are involved in
the exchange of messages, this is no problem. But consider a system with 100 sub-
scribers, any of whom should be able to communicate in secret with the others. If
the system used a single key phrase, user Joe couldn’t verify in a secure manner that a
message had been sent by user Jane. To allow this, every user would need to have a dis-
tinct key phrase—and every user would need to know all the other users’ key phrases.
Ninety-nine key phrases from others to manage, let alone remember—that doesn’t
sound like fun at all.

The main problems of secret-key cryptography are that the number of key phrases
increases with the number of users in the system, and that each user must keep as
many keys as there are users.

Public-Key Encryption

Consider the 100-user system just discussed in the preceding section. Instead of
requiring 99 other users to know his secret key, Joe makes a key publicly available and
maintains one private, secret key. Any of the 99 other users could now use the public
key to encrypt a message and send it to Joe—and only Joe could decrypt it with his
private key. There is an obvious flaw in this system: We’ve lost authentication. Joe won'’t
know who sent him the message because any user could have encrypted it. The sender
of a message therefore needs to sign it with his private key so that the recipient can
check it against the sender’s public key to guarantee authenticity and integrity of the
data. This system is called public-key cryptography, and the two most well-known algo-
rithms for it are Diffie-Hellman and RSA (RSA stands for Rivest, Shamir, and
Adleman, the inventors of the RSA cryptosystem).

The main advantage of public-key over secret-key cryptography is the increased
level of security and convenience. Private keys need never be transmitted to another
party—Dby contrast, secret-key cryptography requires the exchange of the secret key
over a communications channel, raising the possibility for an attacker to discover the
key by eavesdropping during transmission.

147

148 Chapter 4 Web Application Concepts

Another advantage is that public-key systems can provide digital signatures, in
which a user signs his message with his private key. Secret-key cryptography, on the
other hand, would require a central database with copies of all secret keys of a system
to allow digital signatures—Kerberos uses this method, for example. Of course, a cen-
tral point with critical data is always a source of risk.

A potential disadvantage is performance; many secret-key algorithms are signifi-
cantly faster than public-key systems.

Public-key cryptography isn’t meant to replace secret-key cryptography; in some
situations, public-key cryptography is unnecessary and secret-key cryptography alone is
sufficient. When storing data on the server, for example, you’ll probably use single-key
cryptography. Because there are no distinct users in this scenario and the system knows
the key for encrypting and decrypting, there’s not much advantage to having a public
and a private key. To transfer data to a remote system, on the other hand (for example,
when sending orders from an online shop via email), public-key cryptography is pre-
ferred, as sender and recipient are two different users, communicating over an insecure
channel.

The Standard in Encryption: Pretty Good Privacy (PGP)

Unfortunately, PHP doesn’t yet include support for Pretty Good Privacy (PGP). As
there are some Open Source alternatives readily available (for example, Gnu Privacy
Guard (www.gnupg.org), we’re sure that this is only a matter of time. Meanwhile, we’ve
developed the basic class shown in Listing 4.4 to interface a command-line version of
PGP. This class allows you to encrypt, decrypt, and sign files or strings with PGP 6.5.1.

Listing 4.4 PHP interface to PGP 6.5.1.

class pgp

{
var $pgp_bin = "Jusr/bin/pgp"; // Path to PGP binary
var $tmp_path = "/tmp"; /] Path where temporary files are stored
var $error; /] Used to store the last error message

function pgp()
{
/| Check if the PGP binary exists
if(!file_exists($this->pgp_bin))
{
$this->error = "PGP binary file ".$this->pgp_bin." does not exist.\n";
return(false);

}

/] Check if the PGP binary is actually executable
if (!is_executable($this->pgp_bin))
{

}

Security Considerations

$this->error = "PGP binary file ".$this->pgp_bin." is not
=executable.\n";
return(false);

}

return(true);

function _check file($file)

{

if(!file_exists($file))

{
/| Create a temporary filename in the path specified as class variable
$temp_file = tempnam($this->tmp_path, "PGP").".asc";

/| Gently touch the file
touch($temp_file);

/] Open the newly created file, write the string passed as argument
=$file to it

$fp = fopen($temp_file, "w");

if (1$fp)

{
$this->error = "Could not open temporary file $temp _file for
=writing in _check_file().\n";
return(false);

}

fputs($fp, $file);

fclose($fp);

// Assign the temporary filename to $file
$file = $temp_file;
}

return($file);

}

function _exec_pgp_command($args)

{

/| Create a temporary filename in the path specified as class variable
$temp_file = tempnam($this->tmp_path, "PGP").".asc";

/| Execute the PGP command
$command = $this->pgp_bin." -o $temp_file $args ";
exec($command) ;

/] Open the temporary file created by PGP and read it into $contents
$fp = fopen($temp_file, "r");
if (!$fp)
{
$this->error = "Could not open temporary file $temp file for
=reading in _exec_pgp_command().\n";

continues

149

150 Chapter 4 Web Application Concepts

Listing 4.4. Continued

return(false);

}
$contents = fread($fp, filesize($temp_file));

fclose($fp);

/| Delete the temporary file
unlink($temp_file);

/] Return the encrypted contents

return($contents);
}
function encrypt($file, $my_user_id, $to_user_id)
{
$file = $this->_check_file($file);
$ret = $this->_exec_pgp_command("-e -u \"$my_user_id\" -a \"$file\"
=-\"$to_user_id\"");
return($ret);
}
function sign($file, $my_user_id)
{
$file = $this->_check_file($file);
$ret = $this->_exec_pgp_command("-s -a -u \"$my_user_id\" $file");
return($ret);
}
function encrypt_sign($file, $my user_id, $to_user_id)
{
$file = $this-> check file($file);
$ret = $this->_exec_pgp_command("-es -a -u $my_user_id $file
=$to_user_id");
return($ret);
}
function encrypt_conventional($file, $passphrase)
{
$file = $this-> check file($file);
$ret = $this->_exec_pgp_command("-c -a -z \"$passphrase\" $file");
return($ret);
}

function decrypt($file, $my user_id)
{
$file = $this-> check_file($file);
$ret = $this->_ exec_pgp_command("-c $file -u \"$my user_id\"");

Security Considerations

return($ret);

}

function decrypt_conventional($file, $passphrase)

{ $file = $this-> check_file($file);
$ret = $this->_exec_pgp_command("-z \"$passphrase\" $file");
return($ret);

}

Because the pgp class is only calling your system’s PGP binary with the appropriate
arguments, you need a correctly configured PGP system. Specifically, your private key
must be set up correctly and all public keys for which you want to encrypt need to be
in your local key ring. The public key must be a trusted key, or PGP will ask if it’s
okay to encrypt for that user, and the class will fail.

All functions work with either a file or a string. If you pass a string, it will be saved
to $tmp_path as a temporary file because PGP works only with files.

Warning: On a multiuser system, anyone may be able to read this file! The use of
this class on a non-trusted system (meaning that untrusted users are allowed to access
it) should be carefully evaluated.

The class has six “public” functions, and two others are used internally. These
functions return false if an error occurs—in that case, you can access a verbose error
message from $pgp->error.

= void pgp()

The constructor of the class checks whether the PGP binary is accessible.
Returns true on success or false on error.

= mixed encrypt(string what, string my_user_id, string to_user_id)

PGP-encrypts the argument what, which may be a filename or a string, with the
private key of my_user_id for the public key to_user_id. Returns the encrypted
text or false on error.

= mixed sign(string what, string my_user_id)

Signs the argument what with my_user_id’s private key. Returns the signed text
or false on error.

= mixed encrypt_sign(string what, string my_user_id, string to_user_id)

Signs what with my_user_id’s private key, then encrypts it for to_user_id’s
public key. Returns the signed and encrypted text or false on error.

= mixed encrypt_conventional(string what, string passphrase)

Encrypts what with conventional encryption only, using passphrase as the secret
key. Returns the encrypted text or false on error.

151

152 Chapter 4 Web Application Concepts

= mixed decrypt(string what, string my_user_id)

Decrypts what with my_user_id as private key. Returns the decrypted text or
false on error.

= mixed decrypt_conventional(string what, string passphrase)

Decrypts what with traditional decryption, using passphrase as the secret key.
Returns the decrypted text or false on error.

The MCrypt Functions

With the MCrypt library, many block algorithms are available, including DES,
TripleDES, Blowfish, and IDEA. Space doesn’t allow for explaining all these algo-
rithms here, or giving recommendations on how to choose one for a specific scenario;
this is covered in detail by many in-depth books and online articles, some of which
you can find listed in the Resources section of the CD-ROM.

Unfortunately, another library means another API style, and as indicated in Chapter
1, “Development Concepts,” we think this is bad style. Why does mcrypt_cbe() take an
argument defining whether to encrypt or decrypt data? Wouldn't it be more logical and
consistent to have two functions, mcrypt_encrypt_cbc() and merypt_decrypt_cbc()?
There’s no session_var() taking REGISTER or UNREGISTER as argument, is there?

Well, let’s stop complaining. After all, we could simply edit the source for the
MCrypt interface and define these additional functions—that’s the advantage of Open
Source software. So back to the topic. The example in Listing 4.5 shows the MCrypt
functions in use. The example loops through an array containing all possible MCrypt
algorithms and encrypts a message with each algorithm.

Listing 4.5 MCrypt routines.

/] Set up an array of algorithms generally supported by MCrypt

$algorithms = array(
MCRYPT_BLOWFISH,
MCRYPT_DES,
MCRYPT TripleDES,
MCRYPT_ThreeWAY,
MCRYPT_GOST,
MCRYPT_CRYPT,
MCRYPT_DES_COMPAT,
MCRYPT_SAFER64,
MCRYPT_SAFER128,
MCRYPT_CAST128,
MCRYPT_TEAN,
MCRYPT_RC2,
MCRYPT_TWOFISH,
MCRYPT_TWOFISH128,
MCRYPT_TWOFISH192,
MCRYPT_TWOFISH256,
MCRYPT_RC6,
MCRYPT_IDEA
)

Security Considerations

$message = "Hello PHP world."; // Message to be encrypted
$secret = "Secret password"; /| Secret key

for($i=0; $i<count($algorithms); $i++)

{

/] If this algorithm is available, $algorithms[$i] is an integer constant

if (is_integer($algorithms[$i]))

{
print("$algorithms[$i]:
=".mcrypt_get_cipher_name($algorithms[$i]).":
");

}

else

{
print("$algorithms[$i] is not supported
");
continue;

}

// Get the block size of the current algorithm

$block_size = mcrypt_get block_size($algorithms[$i]);

/| Create an initialization vector from device /dev/random

$iv = mcrypt_create_iv($block_size, MCRYPT_DEV_RANDOM);

/] Encrypt the plaintext with $algorithms[$i]

$encrypted = mcrypt_cbc($algorithms[$i], $secret, $message,

=MCRYPT_ENCRYPT, $iv);

/] Decrypt it again

$unencrypted = mcrypt_cbc($algorithms[$i], $secret, $encrypted,

=MCRYPT_DECRYPT, $iv);

/] Output plaintext and ciphertext

print("Ciphertext: $encrypted
");

print("Plaintext: $unencrypted<p>");

}

MCrypt uses block cipher algorithms to encrypt and decrypt data. Block ciphers are an
application of the symmetric encryption method mentioned earlier, as opposed to
public-key encryption. When encrypting a message with a block cipher, different
modes of operations can be used to apply the cipher to the plaintext. ISO92b defines
four generic modes that can operate on cipher blocks of any size: Electronic Code
Book, Cipher Block Chaining, Cipher Feedback, and Output Feedback.

= Electronic Code Book (ECB) mode should be used with care. Each 64-bit block of
plaintext is encrypted independently, one after another, with the specified algo-
rithms. Plaintext patterns are not concealed—they show up as iterations in the
encrypted text. ECB is therefore suitable only for encrypting random data, for
example an MD5-hash.

153

154 Chapter 4 Web Application Concepts

Cipher Block Chaining (CBC) prevents this problem by XORing each block
with the previous block before encrypting it. Thus, the encryption of each block
depends on previous blocks, and the same 64-bit plaintext block can encrypt to
different encrypted blocks, depending on its position in the message. As it can
also take an initialization vector as random seed for the XOR,, it’s much more
secure than ECB.

Cipher Feedback (CFB) mode does it the other way around: Plaintext is
encrypted, then XORed with the previous plaintext block. CFB’s advantage is
that it works with blocks of less than 64 bits and can therefore be used to
encrypt byte streams.

Output Feedback (OFB) mode is similar to CFB, but has an advantage: Bit errors
that might occur during transmission don't aftect the decryption of neighboring
blocks. However, by changing the encrypted text, the plaintext can be manipu-

lated easily, just as with ECB mode.

In practice, CBC is the most widely used mode. TripleDES with CBC mode provides
all the security you’ll ever need in your Web applications.

Have Qualified Staff on Your Team

At the point when security becomes an important issue in a project, it helps to have
qualified people for quality assurance and security auditing. Even if you're a very
experienced programmer, you're human—and you may err. Having another pro-
fessional look over your shoulder on crucial parts of a project provides for the neces-
sary double-checking.

Unfortunately, it’s difficult to find qualified and affordable personnel with expertise
in software security. The topic is increasingly being taught at universities, but not even
the best education can compensate for missing real-life experience—this is true for all
jobs in the new media industry, but especially for the computer and software security
field. These difficulties can be solved, though; by releasing your software under an
Open Source license, it’s quite possible that the industry’s experts themselves will
examine your system. Open Source, with its open development process, enforces real
security—not security through obscurity, but security against all possible attacks by an
attacker with full knowledge of the system and its source code.

Even if Open Source is not an option, you can apply many of the software devel-
opment principles used in the Open Source community to your own product.
Continuous peer review, for example, helps to avoid the most common security bugs
introduced by insufficient testing.

Peer review can be formalized as regular code inspections, which help not only to
avoid security-related flaws, but also other, more general software bugs. In weekly
meetings, a team of up to five persons goes through new source code and inspects it
for common errors such as missing boundary checks, unused variables, or security

Security Considerations

issues. A moderator keeps track of defects found and ensures that they’re corrected later
by the original developer. A typical testing scenario could be constructed like this:

1. A team of two to five developers is formed.

2. For about 60 minutes, the source code (about 200-300 lines of code) is
inspected. Each team member goes through the code line by line, with the aim
of fully understanding what each line does. All found defects are noted.

3. The moderator collects the notes and passes them to the original software devel-
oper, who should not be a member of the inspecting team. Rework can consist
of changing code, adding or deleting comments, restructuring or relocating
functions, etc.

We’d call this discount software inspection. In traditional software engineering, inspection
is much more imposing; Fagan Inspection, as originally introduced by Michael Fagan
of IBM in 1976, requires more preparation, detailed checklists, and more frequent
meetings. Web application development resembles rapid application prototyping, as a
quick time to market is especially important. Inspection methods that are too time-
consuming and resource-intensive are just unrealistic.

Authentication

You’ll soon see that you need another technique again and again: authentication. For
example, if your users should be able to access some parts of your Web site only after
having registered themselves with the system, you need authentication.

The Login Process

Let’s first look at the theoretical concepts of authentication. The login process happens
in three stages: identification, authentication, and authorization.

Identification Stage

To be able to authenticate a user, you need to know his or her identity—you ask the
user for an identification. Identification is a statement of who the user is: This can be a
username, a customer number, or anything else, as long as it’s unique among your user
base. The term user in this context may mean a person, a process, or a system (for
example, a node in a network).

Identification is not authentication! The fact that a user reported an identity doesn’t
mean that this identity is guaranteed to be authentic. Without authentication, the iden-
tity 1is suspect.

Authentication Stage

After getting the user’s claimed identification, you need to verify this claim. This is the
job of an authentication system. Users’ identities are verified using one of three authen-
tication types: something they know, something they have, or something they are.

155

156 Chapter 4 Web Application Concepts

On the Web, the “something they know” method, also called authentication by knowl-
edge, is the most commonly used method. Users can choose or are assigned a password,
which they have to remember and keep secret. Authentication is performed by check-
ing whether the user’s identity is confirmed by the password. Other variants are
Personal Identification Numbers (PINs), pass phrases, or asking for data about the user
that only the user can know. The principal weakness of this kind of authentication is
the fact that it’s often very easy to learn something that somebody else knows. It may
even be possible to guess the magical “something they know” without having to access
it—think of brute force attacks of shell logins. With Web applications, the advantages
of authentication by knowledge usually outweigh this security imperfection; the user
can take the password anywhere and has access to it all the time. Another advantage is
the simplicity of this method and the ease of implementation.

Examples of authentication by ownership (“something they have”) include keys,
magnetic-strip cards, and badges. Unlike the first method, authentication by ownership
is more difficult to duplicate, as the authentication elements are physical objects. For
the Web, this kind of authentication hasn’t yet been established as a valid technique,
despite some efforts to introduce magnetic-strip cards for public-key encryption
systems.

The third type of authentication is even more common. Authentication by characteris-
tics (“something they are”) is, for example, used in firewall systems to grant access to an
object only to systems with a certain IP address or range. Outside the Web, you can
increasingly see authentication by characteristics in systems using retina scans or fin-
gerprints as authentication elements. While this method is the most secure of all three
(after all, the goal of authentication is to verify who you are, and this type is very
closely tied to this goal), it’s also the most cost-intensive to set up. As we’ve already
outlined, IP addresses can’t be taken into consideration when identifying individuals,
so you'd still need a personal identification system using a peripheral product.

Of course, the different authentication methods can be combined to eventually
produce more secure results; for now, however, let’s continue in our login procedure
with authentication by knowledge.

The user specifies an authentication element, commonly a password, along with his
or her claimed identity. But how is this information transferred from the client to the
authentication system? Identification data is commonly subject to interception by an
intruder sitting between the user and the authentication system (a man-in-the-middle
attack). As a consequence, you need to protect against eavesdropping; a trusted path—a
secure communications channel—is necessary to transmit the password. Always keep in
mind that an authentication chain is only as secure at the least secure element—having
128-bit pass phrases won’t help if you transmit them over a normal HTTP connection
to the authentication system.

All Communication Should Be Secure

Even when the identification data is transmitted over a secure communication channel like SSL, there's
room for man-in-the-middle attacks if the other communication after the authentication is not
encrypted. An attacker may get the session ID by eavesdropping, and can so effectively hijack the user's
session and take over the user's identity (for example, to buy articles in an online shop). To avoid this, all
communication would need to be handled over a secure channel.

Security Considerations

The authentication element is checked against an authentication database. The system
holding the database and the way the authentication elements are stored need to be
secure and trusted. The authentication database needs protection from general access,
and authentication elements should be stored encrypted.

Backup systems need to be secure and trusted, too. Proper trust management also
involves setting up roles that define who can access specific parts of a trusted system in
which way(s). But trust management is too vast a topic to be covered here.

Authorization Stage

If the authentication indicates that the user’s identification is correct, the system com-
pletes the login process and associates the user’s identity and access-control informa-
tion with the user session. In trivial applications, the access-control information may
merely consist of a flag that the current user is successfully authenticated. In more
complex situations, the system may also associate a security level or permission level,
defining what the current user is allowed to do in the application (for example, there
may a superuser or a read-only user group). Depending on the level of needed secu-
rity, the system needs to log successful or failed login attempts; for example, the C2
Security Standard requires systems to audit all login events.

HTTP-Authentication

HTTP provides a method for user authentication: HTTP Basic Authentication. On
pages that require authentication, the Web server replies with a special header to
the client:

HTTP/1.1 401 Authorization Required
WWW-Authenticate: Basic realm="Protected Area"

The browser will then pop up a modal dialog box asking for username and password.
Unfortunately, this type of authentication really merits the “basic” prefix—there are a
number of drawbacks:

= To log users out, you have to apply tricks.
= To log users out after a defined idle time, you have to apply more tricks.

= If you need groups of user (what we called “permission levels” earlier), you need
your own application logic to filter individual users to groups.

= It’s impossible to brand the login process; the pop-up dialog will always be the
same, regardless of the Web site.

= Novice users are generally scared of these dialogs. And you can’t provide any
help, as you can’t modify the dialog.

= HTTP Basic Authentication over PHP is only possible with the module version.

= It restricted to directories. What if you want to protect only one page? With
Apache directives, that’s impossible; you'd have to use HTTP Basic
Authentication over PHP.

157

158 Chapter 4 Web Application Concepts

All this leads to the conclusion that it might be wiser to use something else except in
the most basic scenarios, where you know that your audience is used to these dialogs
and you don’t need permission levels or idle timeouts.

PHP Authentication

PHP native authentication, on the other hand, makes it possible to use arbitrary login
screens and authentication procedures, as it’s form-based. For authentication to work,
you also need session-management functions. Once the user is logged in, you need to
remember this state across multiple requests.

You can write your own authentication library using the PHP session-management
functions introduced earlier, or you can use the PHPLib. With its Auth class you can
manage authentication, and using the Perm class lets you set up complete authorization
levels. For details on how this works, see Chapter 6.

Why Usability Matters

You might wonder why a section about usability is included in a book about software
development. We feel it’s a necessity for any serious developer to know about basic
principles for information architecture, user interface engineering, and usability.

As Web applications get larger and more complex, Web developers are challenged
more than ever to create effective and functional Web sites, and usability becomes a
key feature of these sites.

‘What 1s usability? The characteristic of how easy it is to learn and use an informa-
tion system is referred to as the system’s usability. As the developer of an application, it’s
probably easy for you to use it—but you may be surprised at how difficult other users
find your system. Initially, they’re completely unfamiliar with it and might try to use it
for different things than you intended!

While usability engineers have tried to integrate usability issues into an early stage
of software development, this effort hasn’t been very successful. But usability needs to
play an important role from the beginning of each project—starting to think about
usability in the beta test phase is insufficient. We think usability should be placed on
the same level as other traditional characteristics for software quality—such as correct-
ness, maintainability, and reliability. As soon as you, as a software developer, understand
the importance of usability in determining the quality of an application, you’ll strive
to enhance the user experience. How you can achieve better usability in your applica-
tions may vary from project to project, but some key principles form the heart of all
user-centered development:

= Early focus on users, directly involving them in the design process
= Early and continuing evaluation of the application
= Empirical measurement of usability, even in early stages of the development

= [terative design and development

Why Usability Matters

Usability in Web Applications

Web applications have difterent characteristics than desktop applications.

With HTML, you can’t control layout in a 100% reliable way, and you have to
accept compromises in the display. Your site may be viewed on a broad variety of
display devices, ranging from Palm Pilots to Web TV to a standard browser on an
800 x 600 screen.

User interaction is slowed due to the low bandwidth available today, and you can
run only the most basic scripts with JavaScript on the client side.

In traditional software development, you can control where the user can go; you
can gray out menu items or display a modal dialog box that blocks the application
until the user answers questions. But you can’t control the user’s way through your
Web site—he or she may be coming via direct links, from bookmarks, or from search
engines.

And you can’t expect users to read a manual to become familiar with your Web
application—as is commonplace with traditional software—Dbecause users move
between different sites at a rapid pace. The hypertext structure often leads the user to
use the Web as a whole and not as a single application or Web site.

But basic usability engineering principles from “Usability 1017 still apply, and we
need to discuss some of these generic rules. The following guidelines depend on each
other; you’ll need to figure out what importance to give to individual rules on a
specific application.

A user-friendly Web application has these characteristics:

= It’s suitable for the task it should perform.
= It’s controllable by the user.

= It conforms to user expectations.

= It’s personalized.

= It self-explanatory.

Is It Suitable?

The application should help the user to achieve his goal in an effective and efficient
way. Users generally don’t care about fancy graphics; they simply want to reach their
objective—whether that objective is information retrieval or something more specific,
such as ordering a product. In an online shop, for example, the system should assist the
user to go through the ordering process as painlessly as possible. Amazon.com has set
the standard on this: Once a user is registered into the system, it takes a single click to
order a product. But task suitability may begin with single dialogs:

= Show only information the user actually needs to reach his or her goal.

= Make default values available. For example, prepopulate a date field in a form
with the current date.

159

160 Chapter 4 Web Application Concepts

= Don’t require the user to perform unnecessary steps. Instead of displaying error
information on a new page, thus requiring the user to remember which fields
were filled out incorrectly and go back to the previous page, provide the error
messages directly in the form (use the PHP Normal Form). Figure 4.2 shows a
comparative example of these two approaches.

This site makes you start over and forces This site lets you fix what's wrong or
you to remember what was wrong. missing directly on the error form.

- lsix
o3 < € whatsReoed I

“@%t}wl’lmmn\,gap
Wine Serdh Cort = Nows nfe Mal

foom sign in

Order Detaifs: goVino.com iecom USA Wab s, To registar or sign i for a e coulry,
rited Kingdom , Canada , Australia . Germany

o £ Jfal gi

Please return and fill out missing values

Sl e 4P @ 2|
A5 2 € [BIEABOB 56

Figure 4.2 Steps in form validation: good and bad examples.

Can the User Control It?

A Web application is user controllable if the user can influence the speed and direction
of the application until he reaches his goal.

The speed of a dialog box should always be under the user’s control and not dic-
tated by the application. This sounds obvious, but we've seen a great example of how
you can break even this basic rule. After you had filled out a form incorrectly, the
application showed an error message and took you back automatically to the form
after five seconds. Of course, the data you had entered correctly wasn’t saved, and you
had to start over again (if you cared—we simply left that site). Users who switched to
another software or browser instance after having submitted the form would never
even see the error message.

You should also give the user control of the amount of data displayed. If a form
extends over multiple steps, allow the user to switch between the different steps with-
out losing data. Users often choose functions by mistake and need a way to leave the
unwanted state. If the application is suspended by the user, make it possible to resume
it at a later time.

Being controllable also means that the application should adapt to the user’s needs
and characteristics. In an intranet, for example, you can expect more experienced users,
as they’ll get used to the system in their daily work. Thus, the navigational structure and
the application should provide shortcuts or accelerators to reach common goals—for
example, providing pull-down menus to quick-jump to a specific page. These users also
need more advanced help pages to satisfy their different knowledge level.

Why Usability Matters

Does It Conform to User Expectations?

Consistency 1s one of the strongest contributors to usability. As Jakob Nielsen, the
world’s most famous usability specialist, puts it in his Law of the Web User
Experience: Users spend most of their time on other sites. Conventions established on most
other Web sites should therefore not be handled difterently on your site. Dr. Nielsen’s
biweekly Alertbox columns show so much of his experience and know-how that
they’re a must-read for anyone working with product development in the information
technology business. In his Alertbox for August 22, 1999, Dr. Nielsen provides a good
example of what happens when an application fails to conform to user expectations:*

Eric Davis, an Information Architect with Resource Marketing, recently reported on a
usability test of shopping cart terminology. The draft design featured the term “Shopping
Sled” since the site (selling winter sports products) had a desire to stand out and avoid
standard terminology. Result: “50% of users did not understand The Sled concept. The
other 50% said that they figured out what it meant because it was in the same location
as a cart would be. They knew that you had to add to something, and the only some-
thing that made any kind of sense was the Sled.” Lesson: Do not try to be smart and
use new terms when we have good words available that users already know.

Consistency also means that the behavior of and data display in dialog boxes should be
uniform:

= Always display system messages (status feedback, error or success messages) in the
same place on a page and in the same layout.

= Label buttons and links with a consistent naming scheme.

= Use a consistent means to change the state of a dialog. For example, always place
the submit button of a form in the lower-right corner.

= Don’t invent your own GUI elements if you can avoid it. For example, a Web
site we audited used images instead of plain HTML check boxes. Clicking on
the image reloaded the page with a new variation of the check box image
(depending on the previous state, either checked or unchecked). It would be
hard to find a more annoying method.

Is It Personalized?

“Personalized content” is one of the top buzzwords on the Internet today. We don’t
really mean the same thing as the marketing people deliberately promoting personalized
advertising, personalized spam mail, or personalized news. For us, personalized Web appli-
cations simply means applications that are tailored to the needs and cultural character-
istics of individual users.

161

162 Chapter 4 Web Application Concepts

As European Internet users, we often see the saying confirmed that U.S. citizens
tend to have an America-centric view of the world. Usernames that choke on German
umlaut, scheduling applications where you can’t enter timezone information, informa-
tion systems relying on U.S. ZIP codes—the list could go on ad infinitum (see Figure
4.3). While it may cost time and resources to develop an application that can be used
by an international audience, it certainly pays off; as of September, 1999, about 50% of
the Web’s users were not from the U.S.

3 Quick Cost Calculator - Netscape

File Edit View Go Communicator Help
" Bookmarks i Netsite: [htp: /v ups com/using/servicesiiave/rste himi =] &7 what's Related ﬂ

Service Guide Download

Customer Service Site Guide

T é e

. e (7 £

TRACK SHIP |I]IJ]EK COST | TRANSIT TIME PICKUP DROP-OFF SUPPLIES
A

UPS Calculate shipping charges to compare UPS services and published
" rates for shipments from the U.5. and Puerto Rico to destinations in
Qulck Cost more than 200 countries and territories around the world. Required
o felds are shown in bold. Rate calculations are based on the detail of
Calculat()r information you provide.

ORIGIN

Country:

Postal Code:

DESTINATION

Country: |ltaly i
City: |

Postal Code

Residential Address: @ Ves € No =l
o =0=] [Document: Done S

et S AP EE
Stont| | SiPostang | [auick .. (CMetal | Eencypi |) Erplorn. | Fladabep. | [&0 25 @ |23 AAD 1500

Figure 4.3 The UPS shipping cost calculator accepts only the U.S. and
Puerto Rico as origin for a package, even though UPS ships from 50 countries.

Is It Self-Explanatory?

An application is self-explanatory if it helps the user to learn and understand the sys-
tem. This is especially important on the Web; most users are novices with respect to
your site. Users move from Web site to Web site, and usually they won’t remember the
conventions and rules from your site the next time they visit it. So it’s better to spend
time simplifying a dialog box than to spend time making available a help system for
each form field. (For non-trivial forms, though, a context-sensitive help system is
appropriate.)

For many applications, we’ve found that it helps the user to make a demo available
where the user can experiment or is led through step by step.

Bringing consistency to an application also helps to make it self-explanatory. If a
warning message always appears in the same layout at the same place, the user will rec-
ognize it as a system warning more easily.

Why Usability Matters

Discount Usability Engineering

In real life, people rarely use the recommended usability-engineering methods on soft-
ware development projects. One important reason for this failure is the cost of using
traditional usability-engineering techniques. In the highly respected magazine
Communications of the ACM, authors Mantei and Teorey’ estimated in 1988 that the
“costs required to add human factors elements to the development of software” were
over $120,000—regardless of the size of the software development project—as the
estimation consisted largely in evaluating fixed costs like testing and evaluation, lab
construction, product analysis, and so on, which don’t change with the size of the
project and code under development. This figure is more than the entire budget of many
Web site development projects. It’s no surprise that a project manager reading about
such sums dumps usability methods altogether.

Jakob Nielsen’s “discount usability engineering” approach (www.useit.com/papers/
guerrilla_hci.html) is intended to make usability engineering easier, cheaper, and less
time-consuming. When he researched this method in 1989, he found that for most
projects it wasn’t necessary to apply all traditional usability engineering methods.
Indeed, with a basic set of techniques, he was able to improve usability considerably.

Based on the principle of early focus on users, he uses these techniques, discussed
in the following sections:

= Scenarios
= Simplified thinking aloud

= Heuristic evaluation

Scenarios

A scenario is a very reduced set of features or functionality that’s subject to usability
testing. Traditional usability engineering uses more complex test cases, which are diffi-
cult to set up and difficult to test. Since the “discount scenario” is small, you can afford
to change it frequently and use it for testing different versions of a prototype.

Such a scenario is constructed on the basis of a task analysis of the real users and
their work in order to be as representative as possible of the actual use of the system.
Typical scenarios might be the tasks “Print the document” or “Book a flight to
Honolulu for January 1st, 2001,” which can then be user-tested with the simplified
thinking aloud method (described in the following section).

163

164 Chapter 4 Web Application Concepts

Simplified Thinking Aloud

In a thinking aloud study, a user is monitored while performing a previously defined
task in a scenario. Traditionally, these studies were conducted by psychologists or
usability experts who videotaped the testers and then conducted detailed analysis.
Again, this sophisticated methodology is cost-intensive and may be intimidating to
developers. However, it’s possible to run a test without a sophisticated lab, simply by
bringing in some real users, giving them some typical test tasks, and asking them to
think out loud while performing the tasks.

Simplified thinking aloud tests ideally involve three to five users, while the tradi-
tional method requires ten or more users to get valid data. But the focus of discount
usability engineering isn’t gaining statistically valid data; it’s finding most of the
usability problems as fast as possible. Indeed, studies show that most usability
problems can be found with the first tests performed.

Instead of videotaping the participants, the experimenters take notes on paper
about the users’ behavior. Recording, watching, and analyzing videotapes is expensive
and involves at least one additional person to handle the camera. Analyzing paper
notes is quick and nonetheless efficient. The time gained is better spent on running
additional tests and testing different iterations of an interface.

Heuristic Evaluation

Heuristic evaluation is a method to find usability problems in an interface. A small set of
evaluators tests the interface and judges its compliance with established user interface
design principles (the heuristics). These principles may be those described earlier,
Nielsen’s 10 Recommended Heuristics for user interface design (see sidebar), or

a custom set of principles tailored for a specific environment.

Evaluators don’t need to be usability experts—even non-experts can find many
usability problems by heuristic evaluation, and many of the remaining problems would
be revealed by the simplified thinking aloud test. As different people locate different
usability problems, it also helps to let three to five people perform a heuristic evalua-
tion. One project lead should then organize the results from each evaluator and create
a detailed test report that should be presented at an interdisciplinary brainstorm
meeting.

With heuristic evaluation, only the interface is tested for problems. The evaluators
don’t actually use the system; they simply take the heuristics as a checklist and try to
find as many offenses against them as possible. Therefore, this approach must be used as
a complement to the other discount usability engineering methods.

Why Usability Matters

Jakob Nielsen's Ten Usability Heuristics
(www.useit.com/papers/heuristic/heuristic_list.html)

Visibility of system status

The system should always keep users informed about what is going on, through appropriate feedback
within reasonable time.

Match between system and the real world

The system should speak the users' language, with words, phrases, and concepts familiar to the user,
rather than system-oriented terms. Follow real-world conventions, making information appear in a
natural and logical order.

User control and freedom

Users often choose system functions by mistake and will need a clearly marked “emergency exit" to leave
the unwanted state without having to go through an extended dialogue. Support undo and redo.

Consistency and standards

Users should not have to wonder whether different words, situations, or actions mean the same thing.
Follow platform conventions.

Error prevention

Even better than good error messages is a careful design that prevents a problem from occurring in the
first place.

Recognition rather than recall

Make objects, actions, and options visible. The user should not have to remember information from one
part of the dialog to another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.

Flexibility and efficiency of use

Accelerators—unseen by the novice user—may often speed up the interaction for the expert user such
that the system can cater to both inexperienced and experienced users. Allow users to tailor frequent
actions.

Aesthetic and minimalist design

Dialogs should not contain information that is irrelevant or rarely needed. Every extra unit of information
in a dialog competes with the relevant units of information and diminishes their relative visibility.

Help users recognize, diagnose, and recover from errors

Error messages should be expressed in plain language (no codes), precisely indicate the problem, and con-
structively suggest a solution.

Help and documentation

Even though it is better if the system can be used without documentation, it may be necessary to provide

help and documentation. Any such information should be easy to search, focus on the user's task, list
concrete steps to be carried out, and not be too large.

165

166 Chapter 4 Web Application Concepts

Usability: Just Do It

Nielsen says, “Two of the fundamental slogans of discount usability engineering are
that ‘any data is data’ and ‘anything is better than nothing’ when it comes to usability.”
We encourage you to try discount usability engineering—and to apply it in your
development as often and regularly as possible. It doesn’t cost much and will signifi-
cantly enhance the user experience.

Summary

In this chapter, you have learned the basics of session management, how to pass data
from page to page, and how to recognize your users. You can create sessions with PHP
3.0 and 4.0 using different storage methods, and know which ones to choose under
which circumstances. On top of that, you have learned to pay attention to securing
the data your users will entrust to you, as well as to securing your site against misuse.
You know the basics of different encryption technologies and their application fields.

Usability is not a foreign word for you anymore, and we hope that you’ve learned
about the importance of making your site simply suitable for its purpose.You know
most of the common faux pas and can identify interface design weaknesses without
rocketing your development costs sky-high.

After all, it’s your users who finally decide about success or failure of your
projects—and this chapter has shown you how to satisfy them.

References

'See the historical protocol definition at www.w3.org/Protocols/HTTP/AsImplemented.html.
*Wiener, M.J. “Efficient DES Key Search.” Technical Report TR244, School of Computer Science,
Carleton University, Ottawa, Canada (May 1994).

*Fagan, M. E. “Design and Code Inspections to Reduce Errors in Program Development,” IBM
Systems Journal,Vol. 15, No. 3 (1976): 182-211.

‘Nielsen, Jakob. “Alertbox” (August 22, 1999). See www.useit.com/alertbox/990822.html.
*Mantei, M. M., and Teorey, T.J. “Cost/benefit analysis for incorporating human factors in the
software lifecycle,” Communications of the ACM 31, 4 (April 1988): 428-439.

Basic Web Application Strategies

When people see some things as beautiful,
other things become ugly.

When people see some things as good,
other things become bad.

CHAPTER 4, “WEB APPLICATION CONCEPTS,” DESCRIBES THE fundamental
differences between Web applications and stand-alone scripts, and shows methods to
solve the most basic problem—session management. This chapter explores strategies to
deal with other common issues that arise when working on larger projects. While we
will present solutions that we’ve found to be time-saving, effective, and easy to
implement, we encourage you to evaluate whether they really fit your needs—the
chapter 1s titled “Web Application Strategies” and not “Web Application Solutions” for
a purpose. It’s better to spend more time on evaluation than on having to reorganize a
project; as stated in Chapter 1, “PHP Concepts,” time is the most valuable resource that you
will never have enough of.

In the beginning, there was the HTML form. Almost every Web application solicits
information from the user. Therefore, it’s important to pay special attention to form
validation routines—you need to find a generic handling routine if you don’t want to
reinvent the wheel over and over. The first part of this chapter describes the PHP
Normal Form and how to use the EasyTemplate class to separate code from design.

168 Chapter 5 Basic Web Application Strategies

Using a template mechanism allows for better collaboration in multiple-discipline
development teams. But it’s only a small facet in team management; we also show how
to organize your projects and how to use version-management software.

Then, on the way to the next chapter, we’ll stop by in the marketing department
and discuss the real benefits of multi-tier applications.

The PHP Normal Form

How do you validate your form data? Using JavaScript? A second action-handler
script? Maybe not at all, or only partially?

As explained in Chapter 4, data supplied by a user in a form submission or query
should be treated as “contaminated” until it has been validated by your application. So
you’d better check that input. But how to validate it?

JavaScript is one commonly used method. But JavaScript should never be the only
validation method used—the user may have turned it off due to the security risks
related to client-side scripting, or the browser may not even support it. In a worst-
case scenario for your Web site users, you’ll have to deal with disabled JavaScript
capabilities. Because of the different implementations of JavaScript among browsers,
more complicated validation—for example, pattern matching with regular
expressions—is either completely impossible to realize or a development nightmare.
And while security through obscurity is never a good principle, sometimes you don’t want
the user to see all your validation rules using the View Source feature of his browser.

Of course, if it was reliable to use, JavaScript (or better client-side validation in
general) would be our preferred method. The primary advantage of client-side
validation is speed: Syntactical validation could be done instantly, eliminating the need
to send the form data to the Web server, parse it there, and send an entire page as
response back to the browser—a tedious and slow procedure. In the current situation,
however, JavaScript can only be used as an add-on for server-side validation.

So PHP comes into play again. Even with PHP, there are many ways to provide
form validation. Most new users will choose the straightforward technique of having
two separate files—one containing the HTML of the form and one containing the
PHP action-handler script. This is most common with traditional Perl/CGI scripting.
In most situations, we dislike this scenario for its several drawbacks:

= You need two separate files. As innocent as this may sound, it becomes quite a
problem when dealing with large projects containing hundreds of PHP files.

= It leads to those “Your form has an error, please use your Back button to return
to the form” pages that we bashed in Chapter 4.

s It easier to pre-populate form fields when validation and form are in one file—
it doesn’t matter then where the “pre-populating” data comes from, whether
from the user in case of an error, or from a database for an editing page.

The PHP Normal Form 169

From our experience, the PHP Normal Form (shown in Figure 5.1) is the most
versatile option to process forms. Of course, other strategies may fit better to your
specific needs, but the logic we outline in the Normal Form is so generic that it can
be applied to most forms. Basically, the PHP Normal Form combines the user
interface (the form) and application logic in one page, while still separating HTML
layout from code. On the first request of the page, the form is shown. When the user
submits it, the application validates the data.

Invoked by POST? |

yes Validate Data |
| Errors found? |
Message = success | | Message = errors
| Display message |
Display form |

Figure 5.1 The PHP Normal Form.

Let’s construct a simple form as an example (Listing 5.1 shows the source). We want
the user to enter his or her name and email address. At the top of the script, the
application logic checks whether the script has been invoked by submitting the form.
If this is the case, the CGI environment variable $REQUEST_METHOD is set to POST and
the application knows it should begin to validate the form data.

Listing 5.1 Sample PHP Normal Form.

/*
* mixed sprint_error(string string)
* Return a formatted error message or nothing if the passed argument is
=empty
*/
function sprint_error($string)
{
if (lempty($string))
{
return("
 ! $string\n");
}

} continues

170 Chapter 5 Basic Web Application Strategies

Listing 5.1 Continued

// Initialize $message
$message = "Please fill out this form:";

// Has the form been posted?
if (SREQUEST_METHOD == "POST")

{
/] Initialize the errors array
$errors = array();
/] Trim all submitted data
while(list($key, $value) = each($form))
{
$form[$key] = trim($value);
}
/| Check submitted name
if(!is_clean_text($form["name"], 4, 30))
{
$errors["name"] = "The name you entered is not valid.";
}
// Check submitted email address
if(!is_email($form["email"]))
{
$errors["email"] = "The email address you entered is not valid.";
}
print('<div align="center">");
/] Can the form be processed or are there any errors?
if(count($errors) == 0)
{
print("The form has been processed.<p>");
printf("Name: %s
", $form["name"]);
printf("Email: %s
", $form["email"]);
phpBook_footer("../");
exit;
}
else
{
$message = "There were some errors. Please see below for details.";
}
print('</div>");
}

// Create a new EasyTemplate class
$template = new EasyTemplate("PHP_Normal_Form.inc.html");

/| Assign template values

$template->assign("HEADER", $message);

$template->assign("ACTION", basename($PHP_SELF));
$template->assign("NAME_VALUE", isset($form["name"]) ? $form["name"] : "");

$template->assign("EMAIL_VALUE",

The PHP Normal Form

isset($form["email"]) ? $form["email"] : "");

$template->assign("NAME_ERROR", sprint_error($errors["name"]));

$template->assign("EMAIL_ERROR",

/] Print the template

sprint_error($errors["email"]));

$template->easy print() or die($template->error);

Tip: $REQUEST_METHOD is obviously a variable of global scope and thus not available
inside functions.You can access it there using the $GLOBALS array with
$GLOBALS["REQUEST_METHOD"] or by doing a global $REQUEST_METHOD;.

The submitted data is validated for syntactical correctness using two functions from

the file String_validation.inc.php3, which provides some commonly used string

validation functions (see Table 5.1). When an error in the submitted data is found, an

appropriate error message is inserted into the associative array $errors. This helps later

to determine whether an error had been found—if count ($errors) is greater than 0,

the application reacts accordingly and doesn’t process the form.

Table 5.1 String Validation Functions from String Validation.inc.php3

Function

is_alpha()

is_numeric()

is_alphanumeric()

is_clean_text()

is_email()

contains_bad_words()

contains_phone_number ()

Purpose

Checks whether a string contains only alphabetic
characters; optionally checks for minimum and
maximum length.

Checks whether a string contains only numeric
characters; optionally checks for minimum and
maximum length.

Checks whether a string contains only alphanumeric
characters; optionally checks for minimum and
maximum length.

Checks whether a string contains an extended set of
characters that may occur in Western alphabet names
(includes all alphabetic characters, umlaut characters, all
kinds of quotes); optionally checks for minimum and
maximum length.

Checks whether the string is a syntactically valid email
address (see the later discussion on the limits of this
function).

Checks whether the string contains words defined in
the array $bad_words inside the function. This is helpful
for bulletin boards, discussion rooms, and so forth,
where you want to avoid insulting language.

Checks whether a string contains phone numbers—any
10+ digit sequence, optionally separated by parentheses,
spaces, hyphens, or slashes.

171

172 Chapter 5 Basic Web Application Strategies

Validating an Email Address
Validating an email address is a common problem. Our approach only verifies the syntactical correctness

using the following regular expression:

$ret = ereg(
" ([a-20-9_] 1\ -1\ L)+
‘@',
"(([a-z0-9_] \\-)+\\.)+".
'"la-z]{2,4}$",
$string);

= Must contain a defined set of characters before the at (@) sign
= An @ sign
= A hostname with a minimum length of two characters

= A top-level domain with a minimum length of two characters

In most cases, such validation is sufficient—but it's by no means a complete check against the official
syntax defined in RFC 822. The RFC allows for email addresses in the form "Name" <mail@host.com>,
which our check would reject. But our check also doesn't test whether the email address actually exists.

Occasionally, you'll see another approach that seems to be more stringent at first glance, but fails too
often in real life to be useful. It's based on the fact that SMTP, the Simple Mail Transfer Protocol,
provides feedback as to whether a local user exists. By sending the SMTP header indicating the recipient's
address or username on the local system, the SMTP server responds with a status code of 250 if the user
exists and a status code of 550 if the user is unknown to the system. So far, so good—in theory.
Unfortunately, many mail servers are configured to accept all users; they'll answer all requests with
"250—Recipient OK." We tried it with one of the mail servers we use; because our mail server was
configured that way, we got the expected response of accepting all users. Because SMTP is a clear-text
protocol, you can easily verify this behavior by "simulating” an SMTP session over Telnet:

bash-2.01$ telnet smtp.dnet.it 25

Trying 194.242.192.2...

Connected to ns.dnet.it.

Escape character is '"]'.

220 ns.dnet.it ESMTP Sendmail 8.9.3/8.9.3; Tue, 26 Oct 1999 14:02:43 +0200 (MET)
HELO www.profi.it

250 ns.dnet.it Hello www.profi.it [194.242.192.194], pleased to meet you
MAIL FROM: tobias@dnet.it

250 tobias@dnet.it... Sender ok

RCPT TO: this.user.doesnt.exist.for.sure

250 this.user.doesnt.exist.for.sure... Recipient ok

QUIT

221 ns.dnet.it closing connection

Connection closed by foreign host.

The PHP Normal Form 173

A better idea would be to check whether the MX (Mail eXchange) host exists, for example by using the
getmxrr () function. But this can still slow down the validation considerably if the remote host's DNS
server is slow to access or lookups are not in the local cache, so use it with care. Keep in mind that there
can be more than one MX host, and it's sufficient if any one of them is reachable.

Yet another method is brought up sometimes: The PHP script could finger the user on the remote host to
verify an email address. Of course, this only works if a) a finger server is set up, and b) the username
matches the email address. That doesn't happen very often.

Figure 5.2 shows the application’s reaction on erroneous input: An error message is
displayed just below the offending input field, providing instant feedback to the user.
All form fields are pre-populated with the user’s inputs, so no data is ever lost. If no
error was discovered in the validation phase, count ($errors) equals zero and the
application can process the data: store it in a database, send it via email, whatever.

&b Application Development With PHP - Netscape
le Edi Yiew Go Communicalor Help

D 4§ Bookmarks £ Location Ihtlp /v, phpwebdew. com/book /Forms/PHP_Mormal_Form.php3 = (&l” what's Related ﬂ

B

Web Application-Development-with -PHP

There were some errars. Please see below for details

[TOBI4S Ratschiller

! The name you entered is not & valid string
tobias@dnet

! The email address you entered is not valid

- Submit

| == [Document, Dane =

£)
#histant| |[Fweb Application D_.. | [5Posteingang - Outiook | B PuTTY: wanphowebd._| || 24 21 % & | B ABGB 05

Figure 5.2 The PHP Normal Form in action.

Another little trick we find useful is to have all form data combined in one array,
named $form in the example. If you want to apply a validation rule to each single
element submitted by the user, this proves to be very handy—it’s simply a matter of
looping through the array. The example uses this to remove leading and trailing
whitespace from form data by using trim().

174 Chapter 5 Basic Web Application Strategies

Tip: Unlike PHP 3.0, PHP 4.0 supports multidimensional arrays in forms. This
actually makes it realistic to have all form variables, including select multiple fields,
contained within one array.

Using HTML Templates

You may have noticed that there’s no HTML code in the form example. Indeed, we
have “outsourced” the HTML to a separate file called PHP_Normal_Form.inc.html. This
is a template file, containing all HTML layout and some template tags such as
{HEADER}.

Maybe this sounds familiar to you because you've already used the class
FastTemplate. EasyTemplate leaves out the advanced features of FastTemplate—all it
does is provide a fast interface to replace scalar tags in templates with a string value.
Because it restricts itself to this simple operation, it offers a performance boost of over
120% compared to FastTemplate when parsing our form template.

The template class we developed has just three functions: assign(), easy_parse(),
and easy_print(), described in the following table:

Function Description
void EasyTemplate The constructor of the class. Takes as
(string template_filename) argument the filename of the template you

want to use. If an error occurs, the $error
variable will contain the error message.

bool assign Assigns a value for a template tag. Returns
(string tag, string value) true on success and false on error.
mixed easy_parse() Parses the template and returns it as a

string. If an error occurs, the function
returns false and sets the class’s $error
variable to a meaningful message.

mixed easy_print() Parses the template and prints it out. If an
error occurs, the function returns false and
sets the class’s $error variable to a
meaningful message.

Tip: A constructor in PHP always returns void—no matter what you're trying to do
with return().

What'’s the advantage of using templates? The main advantage is separation of layout
and code. Any designer can open the template file in his favorite HTML authoring
software without having to worry about breaking the script code. And the developer
doesn’t need to deal with HTML at all.

The alternative would be embedding PHP code directly in the HTML. If you were
to redesign your application, you'd have a hard time changing the HTML code
manually.

Project Layout 175

But why didn’t we use FastTemplate? First of all, it would be overkill for this
situation—and if overkill means a 120% performance loss, we’re not thinking twice
about creating a more specific solution.

Just because the PHP Normal Form is our favorite way of validating form data,
that doesn’t mean that it’s the only method or even the best method for handling your
specific problem.You may object that the PHP Normal Form as we presented it here
doesn’t provide a high-level interface for forms—for each form you write, you have to
develop the script to validate the data. Well, you're a clever person and you're certainly
right; other people seem to have the same idea. The standard PHP library PHPLib
includes an object-oriented approach to form handling: 00H Forms and tpl_form.

These classes provide an object-oriented interface to HTML forms. They can
validate user input client-side using JavaScript and server-side using PHP regex.
Instead of writing HTML code directly, 00H Forms lets you use its functions to create
form elements. This object-oriented notation appeals to some people, and we
encourage you to evaluate the package. The API is quite complex but it’s documented
well on the Web site at http://phplib.netuse.de. Our feeling is that automation of
form validation doesn’t work well in real life because there’s often too much
complexity involved: Some form input depends on previously submitted data, uses
complex string-validation rules not expressible with regex, or involves other external
sources such as databases. This can’t be abstracted well enough to provide completely
generic validation routines.

Note: At the time of this writing, first efforts were started to integrate a template
API into PHP 4.0.This is certainly to be welcomed, because it will offer standardized,
open template handling.

Project Layout

The time arrives when even 12-hour days, weekend toil, and gallons of coffee and Jolt
cola won't be enough for a single developer to complete a project on time. For the
average programmer, this is a significant break in life: No more lonely hacking on his
own code, using that cool style only he can read, being his own boss, only turning up
from coders’ underground from time to time to get a pizza.

No—now he has to worry about standards, style, and project management. But
maybe, as a reward, he can get back to normal working hours again, freeing some time
for non—work-related things. Who knows, maybe he can even start socializing again?

Team Collaboration

The Internet introduced the capacity to communicate and work together over long
distances, regardless of the geographical location of individual team members. This
opens great new possibilities for distributed teams. Large companies are not limited by
geographic boundaries today. Indeed, many corporations develop software applications
by blending experts’ skills from many different geographic regions.

176 Chapter 5 Basic Web Application Strategies

Project management is a critical component in effective management of distributed
software development. When a new project is started, people know nothing. They
don’t know what to do and they don’t know when to do it. They need someone who
coordinates activities, allocates responsibilities, and monitors progress and results. They
need a project manager.

Software development project management is so vast a topic that we can’t cover it
in this book, unfortunately. Many good methods and resources are available, and we
encourage you to review them if you have no formal training on the subject. This
includes literature from The Mythical Man Month to methods like the Personal
Software Process.

We’ll focus on the stages of a project in which technical development is involved.
You have already seen in Chapter 3, “Application Design,” how to plan and lay out an
application programming interface (API). Indeed, this was a mini-project of its own.
We made some silent assumptions in that discussion: how to organize the code in
directories, who’s on the development team, how difterent versions of the API are
maintained.

In real (larger) projects, however, you’ll have to make these decisions yourself. And
since they form the basis of your project, you'd better think twice before you commit
to something that could prove inadequate later.

Directory Structure

The most basic—but nevertheless often neglected—technical decision to make when
beginning the source code development of a new project is what directory layout to
use. Generally, we use the following structure:

/home /www/phpwebdev.com/1live/cgi-bin
htdocs
htpasswd
include
logs

/home /www/phpwebdev.com/staging/cgi-bin

htdocs
htpasswd
include
logs

/home /www/phpwebdev.com/dev/cgi-bin

htdocs
htpasswd
include
logs

Project Layout

Looking at the first directory unit, notice that there are separate directories for
included files (libraries, configuration files, templates) and password files (for use with
.htaccess files). Password files should never be accessible over the Web, as the
passwords contained therein are encrypted with weak standard algorithms and thus
attackable with a cracking program. Include files may not need to be protected from
outside access for security reasons, but it’s always a good idea to store them outside the
document root. Even if the Web server should fail to parse a document because of a
misconfiguration, important libraries that might contain trade secrets, system
information, or innovative algorithms won'’t be visible to Web surfers.

Tip: On all projects, we use a file named configuration.inc.php3 that defines
configuration data in the scope of the project. This file also defines the base path of
the project—this makes it easier to include additional files located in subdirectories
later in the script.

There are three different directory groups: live, dev, and staging.

= The subdirectory live contains the production environment (the actual
Web site).

= dev is used for the development server.

= staging is the transition from dev to live and is used for quality assurance and
final testing before a rollout.

Separation of development and live server becomes indispensable on larger sites—you
simply can’t afford to edit live Web applications. A script error would immediately
affect hundreds or thousands of users. Think about what could happen if this script
error produced data inconsistencies on a production database...

So the solution is to differentiate between a development server and a production
server. In our example, these two servers are on the same physical machine. The
development server could be made accessible under dev.phpwebdev.com with
appropriate access restrictions; for example, IP-based filtering. On larger and more
critical systems, it’s usually better to move the development server to a second,
identically configured server. This makes it easier to test software updates, operating
system reconfigurations, hardware changes, etc.

But why the staging server, a third server? Does this sound exaggerated? Not if
your team is large enough to contain dedicated staff for quality assurance (QA) or
security auditing. For a complex site, you'll often need to spend considerable time on
testing before launching a revision. Developers can’t be required to wait idling while
the QA staft is banging on the development server. Another reason to include a
staging server in your setup is that developers feel it’s safer this way to introduce more
significant changes to the development server—they don’t need to worry that much
about breaking other developers’ code. If a problem occurs, they can solve it before the
project manager commits the development version to the staging server. Of course, if
someone breaks the staging server, he’ll still need to do the traditional thirty push-ups.

177

178 Chapter 5 Basic Web Application Strategies

How does a typical development life cycle work using such a setup?

1. The new project is started by creating the directory structure and setting up
CVS (more on CVS shortly).

2. Developers check out a copy of the development branch.
3. Developers commit their changes to the development branch.

4. After a significant milestone has been reached and the system is ready for
testing, the project manager transfers the development code to the staging server.

5. QA and security perform their tests on the staging server. Issues that are found
are reported to the developers.

6. The developers fix bugs and return the project to QA unless no more bugs are
found.

7. To launch, the staging server is copied over to the production server. Don’t
forget the launch party at this point!
Note that we talk here only about the code development stage of the project. Of
course, the project as a whole still follows the cycles of software engineering:
1. Project initialization.
Analysis.
Design.
Technical specification and database design.
Implementation (that’s what we’re talking about).

Quality assurance.

N v ke

Release.

CVS: Concurrent Versions System

‘When multiple developers work on one project, the potential for version conflicts
arises; this is even more likely when the developers are working not in the same cubicle
but distributed across national boundaries. What happens if two developers edit one file
at the same time? The changes of one developer will inevitably be overwritten. What
happens if a script authored by John doesn’t work anymore after having been changed
by Jane? John will have a hard time figuring out what Jane had changed.

This is where version control systems come into play. This software “remembers”
previous versions of a file, allowing you to revert to an older version quickly (a sort of
extended undo). The version software will notify you when other developers have
edited files you're working on and allow you to react to conflicts. And finally, it will
remember who made certain changes.

CVS: Concurrent Versions System

CVS is a software that does all of the above—and is even free (Open Source). The
development of PHP itself is managed with CVS, and such successful projects as
everyone’s favorite Web server (Apache), the Mozilla project, and KDE trust CVS to
manage the work of dozens of individual developers. Even the XML source code of
this book is maintained with CVS. The authors are in Germany (Till) and Italy
(Tobias), the publisher (New Riders) and the editors are located in the U.S,, the tech
reviewer is in Australia, and we all work on one central repository called phpBook on a
CVS server in northern Italy. The repository contains all the text, some PHP utilities
to create unified versions of the individual chapter files, some resource files for
XMetaL (described shortly), the code examples, and the figures. On our local systems,
we use WinCVS or command-line CVS to administer the files and work on the text
with XMetaL, SoftQuad’s XML editor, in a very comfortable way.

Many software projects have a similar scenario: The developers are spread across the
globe. CVS is ideal for Internet-based software development: It’s a client/server
application utilizing the Net as transport layer, and maintains a central repository of
the source code. Within the repository, single projects are organized in modules. Each
developer checks out a module from this repository and works on the local version—
this is a great way to reduce the online time, especially when you have to use dial-up
Internet access. When the developer is done with his changes, he commits the updated
file to the repository. The CVS software handles all the rest and does the following:

= Associates a version number to each revision of a file.
= Stores a log entry for each revision.
= Keeps track of who has checked out a file to work on it.

= Warns you when others have edited a file you want to check in.

Let’s walk through a typical CVS session at the beginning of a project. There are two
developers, John and Jane, who are working on the implementation of an API. We
assume that their project manager has set up a complete CVS server, created a
repository module named f-api (as in fictitious API), and set the CVS environment
variables in their shell accounts accordingly. (For more information about the
installation of the CVS server or client, please refer to the CVS reference manual.)

The first step for both developers is logging into the CVS server and checking out
a copy of the module. This is done using the cvs checkout command, which will
create a directory named after the module (in our example, . /f-api):

john@dev:/mnt/daten/home/john > cvs login
(Logging in to john@www.phpwebdev.com)
CVS password: <password>
john@dev:/home/john > cvs checkout f-api
cvs server: Updating f-api

U f-api/config.inc.php3

U f-api/f-api_read.php3

U f-api/f-api_write.php3

179

180 Chapter 5 Basic Web Application Strategies

Now that each developer has a local copy of the whole project, they both can start
editing the files. They have agreed that John will work on f-api_read.php3 and Jane
on f-api_write.php3.This is an important concept to note: CIS cannot replace team
communication!

After John has finished his initial pass of development, he’s going to transfer the file
back to the central repository. Because no one else has edited the file in the meantime,
all it takes for this action is a single CVS command:

john@dev:/home/john/f-api > cvs commit f-api_read.php3

CVS will now launch the system’s standard text editor—on UNIX systems often vi;
on Windows, Notepad—and ask for a log message that will be associated with this
revision. This message can be viewed by the other developers, so it should accurately
describe the work that has been performed. Messages like “changed file” or “new
feature” don’t make any sense and should be avoided. Try to write a concise and clear
summary of the work that has been performed; keep in mind the guidelines raised in
Chapter 1, “Development Concepts,” for inline source code comments. Some
development teams even use the log messages to automatically provide the customer
with a detailed account of work that has been performed to date. For example,
following is an example of a well-written log message:

Fixed bug #42; implemented additional checks on user-data (int, date),

see spec p25

Unlike other version-control systems, such as RCS or Microsoft’s Visual Source Safe,
CVS doesn’t lock files as soon as you check them out. This means that multiple
developers can edit files simultaneously, and is a great advantage in our eyes. In our
scenario, both Jane and John could simultaneously edit the config.inc.php3 file. As
soon as John checks in a file that has been modified and checked in by Jane, he’ll get a
warning and will need to update his local copy before he can commit the file. In
simple cases—for example, if John has edited a function at the top and Jane has edited
a function at the bottom of the file—CVS will merge the two versions together
automatically and John can commit the combined version right away. In other
circumstances, an automatic merge may not be possible. Imagine the following
original line in the configuration file:

define("FT_ZIP_ARCHIVE", "ZIP_ARC"); // GZip Archive

John modifies the constant and commits into the repository:

define("FT_ZIP", "ZIP_ARC"); // GZip Archive

Jane clarifies the comment in the discussed line:
define("FT_ZIP_ARCHIVE", "ZIP_ARC"); // GZip Archive (not PkZip compatible!)

CVS: Concurrent Versions System

Obviously, she’s working on a non-current version of the file and the need for a
merge becomes apparent. When Jane tries to commit her version, CVS shows a
warning:

jane@dev:/home/jane/f-api > cvs commit config.inc.php3

cvs server: Up-to-date check failed for “config.inc.php3'

cvs [server aborted]: correct above errors first!

cvs commit: saving log message in /tmp/cvs@7789baa
This means that she needs to bring her local version up-to-date before a commit is
possible again:

jane@dev:/home/jane/f-api > cvs update config.inc.php3

RCS file: /usr/local/cvsroot/config.inc.php3/config.inc.php3,v

retrieving revision 1.3

retrieving revision 1.5

Merging differences between 1.3 and 1.5 into config.inc.php3

rcsmerge: warning: conflicts during merge cvs

server: conflicts found in config.inc.php3

C config.inc.php3
This is a case where an automatic merge is not possible. Instead, CVS creates a special
version of the file in conflict, containing special markers to denote conflicting sections.
Within this marker, CVS shows the local version of the section in question and the
version from the remote repository:

<<<<<<< config.inc.php3
define("FT_ZIP_ARCHIVE", "ZIP_ARC"); // GZip Archive (not PkZip compatible!)

define("FT_zIP", "ZIP_ARGC"); // GZip Archive

>>>>>>> 1.3
The first group contains Jane’s version, the second the version from the repository. It’s
now Jane’s responsibility to go through the code and correct the conflicts. This may be
a simple matter of adding the other developer’s changes to the local version, or a
complex issue that must be resolved with other project members in a phone call or
meeting. Even in our simple example, Jane would probably have to talk with John
about the reasons he shortened the constant from FT_ZIP_ARCHIVE to FT_ZIP.

As soon as Jane has resolved all conflicts, she can commit the file to the repository
and CVS will happily accept it:

jane@dev:/home/jane/f-api > cvs commit config.inc.php3

In turn, John can now update his local version with the unified copy to complete this
round of editing.

Manual merges are rare, and we've found that you can often avoid them by
maintaining proper communication between team members. The few conflicts that
cause headaches are nearly all due to poor communication between developers—a
problem no source-control system can avoid.

181

182 Chapter 5 Basic Web Application Strategies

Now that Jane has had to deal with conflicts, she’s getting cautious and wants to
check the status of the file f-api_write.php3. She issues a CVS status command:

jane@dev:/home/jane/f-api > cvs status f-api_write.php3

The command shows that her local copy is the most current available. These are the
status codes in CVS:

Code Description

Up-to-date The local copy is identical to the copy in the
CVS server.

Locally Modified The local copy has been modified and not yet
committed.

Locally Added The file has just been added in the local
directory.

Locally Removed The file has just been removed in the local
directory.

Needs Checkout or Needs Patch The version in the remote repository is newer

than the local copy, which needs to be updated.

Needs Merge The version in the remote repository is newer
than the local copy, which has also been
modified. This will result in a merge after the
update.

File had conflicts on merge There was a manual merge and its conflicts
have not yet been resolved.

Unknown The file is not under CVS control.

Each revision committed by a developer is automatically tagged with a version
number. As we've already said, this allows the retrieval of any version of a file. Using
the cvs diff command, a developer can even view differences between arbitrary
versions without actually retrieving the file. The default action for cvs diff is to
compare the local revision with the remote version:

jane@dev:/home/jane/f-api > cvs diff f-api_write.php3
By using the -r option, which allows her to specify the revision with most CVS

commands, Jane can compare the local copy with remote revision 1.1 (the original
version):

jane@dev:/home/jane/f-api > cvs diff -r 1.1 f-api_write.php3
Index: config.inc.php3

RCS file:
/usr/local/cvsroot/config.inc.php3/config.inc.php3,v
retrieving revision 1.1

retrieving revision 1.3

CVS: Concurrent Versions System

diff -r1.1 -r1.5 3c3
< define("FT_ZIP_ARCHIVE", "ZIP_ARC"); // GZip Archive

> define("FT_ZIP", "ZIP_ARC"); // GZip Archive (not PkZip compatible!)

While CVS is usually very good at merging different revisions of a file, under certain
circumstances it’s easier to avoid merges. For example, if the dift shows extensive
changes on the remote server, and Jane has made only a few changes in her version,
she may want to abandon her version in favor of the revision in the CVS repository.
To do so, she’d simply delete the local file and do a new checkout from the server.

CVS Timesavers: GUIs and CVSweb

If you know the basic CVS commands described in the preceding section, you hold
the full power of a command-line tool in your hands:You can use CVS in remote
shells, automate processes with shell scripts, and show your colleagues that you really
know the ins and outs of your job. For everyday work, however, we prefer a GUI.
For Windows workstations, WinCVS, available from www.wincvs.org, is a nice

utility to help in getting the job done (see Figure 5.3). This software doesn’t hide the
complexity of CVS by any means, but it gives you convenient access to the most-
often-needed features through a graphical front end.

Fle Edit Wiew CvsAdmn CvsFiles CvsFoiders Selections Window Help
CREEEREE R RO ETE R EE S
o] wla] 2l sl| | mim 5|
EE=T Name Rev. | Option | Status [Tag [Date -
(21 dochook & [#] #Case_studies.x... Unkniown
-2 fp & 2] advanced Synkaxoml 1,29 File Wed Apr 12 12:57:14 2000
-] german-faq | #) application_Designoanl 1.9 File Sun Mar 19 13:09:34 2000
21 Jade & Blpasic_web_applic... 111 Mod, Fils Wed Apr 12 12:57:26 2000 |
20 bsbenno-1.C | 2) Coce studdes.xml 110 Mo, File Result of merge
(21 inuxdoc # (91 Comparisons.xml Unknown
o g :f':lﬂ'" £ [od] Cover.pdt 1.1 b Binary Tue Mar 21 16:01:50 2000
501 phoads # [Scutting Edge_pp... 1.7 File Wed Apr 12 1257146 2000
s # Bpatabase_pceess... 1.3 Had, File Tue Feb 15 16:02:46 2000
70 phpchat [Plent Unknown Folder 2

51030 phochat_deme L | 3
(#-(2] phpdac M Foreword.xml =
(2] phptib N TOC. xml
-0 phpbyadmin | 0 make . phns
E

E

E

#-(] phpReference
7 2] program files
(7] Programme
{2] RECVCLED M source/CON/basic.phpd
{2 ref
{2] Tao of PHP
Temp
(2] weddc
-] xmirpe

¥ source/Forms/EasyTenplate. inc.phpd

N 1| =
For Help, press F1 T
Liglistart || | Ggne. . | | @ .| Elvee | Bivo.. | Evee [E p B | o [Flaa | |) &) (B 1szs |

Figure 5.3 WinCVS.

183

184 Chapter 5 Basic Web Application Strategies

Another very useful tool is CVSweb, a Perl CGI script that gives you an overview of
your CVS repositories. It helps to manage larger projects by displaying each file in a

list with its last log message, date of modification, and author (see Figure 5.4).You can
request any revision of a file and view nicely colored difts between arbitrary versions.

CV¥S Repusitary - Netscape
File Edt View Go Communicator Help

. = 3 N a @ S & f@

Back Foiwzd Reload Home Seach Nelscape Print Secuity Stop

" Bookmarks £ Locatiors [Fttp:/7 i phpwebde. com/cvsweb/indes coil | FJ7 what's Related
WebMail Contact People Velow Pages Download Find Sitss (L] Channets

File Rev. Age Author Last log entry -

(2 Atties [Don't hide]

© eures

(L sourcer

0 st

Advanced R 12 Sdays il dgﬁ:mrmnmﬁcahnnsmtheODPpaﬂ, chapter halforay

Basic Web Applications. initial commit, first chapter PHF
Normal Form is ready

—

Basic Web Apphcation Strategies zml L1 Jdays tobias

PIP Concents il 118 Shours tobias snaidﬂ:l;?:.hp how to extract block comments from &

TOC zml 16 5 hours tobias add case study chapters

Web Application Concepts.xml 111 4 weeks il Wrote summary, chapter should now be finalized, (T

foot ternplate L11.1.1 dweeks tobias Weh Application Development With PHP =
head template 12 7 weeks tobias separate xmetal files (dtd, rules, css) and content

= 19 5 vneeka Hl update: toc incladed the chapter, mekephp3 hos asmall =

= [=b= [Document: Done E

e Y AP D
AAstart] | @Ears | .. | S| Glewl] E1ovs.| €18, | Ehte] Pade. [Bov | A& 3 68 B4R 7 |

Figure 5.4 The CVSweb interface.

Advanced CVS

Of course there’s a reason that Per Cederqvist’s CVS reference manual is such a long
beast. The basic commands are learned quickly even by developers who are new to
CVS, but the advanced features of CVS require more attention.

Tags and Branches

For example, CVS uses the concept of tags and branches. CVS tags are quite easy to
understand. In our earlier example, John and Jane had worked eagerly until reaching
the final project stage and releasing version 1.0 of their F-API. Now, two days later, an
important customer discovers a bug in the APL. A quite-easy-to-solve bug, actually—
but our developers have already moved on with development and can’t release the
current source code as a stable version. If they wanted to apply the bug fix, they'd
have to find out which version of each file was in the release, check that revision out
from CVS, and create a new release. That may be possible with the three files from
our example, but they’d be stuck back to their weekend toil if the project involved a
considerable number of files.

CVS: Concurrent Versions System

The solution CVS offers is to associate a verbose tag with a specific revision when
a milestone has been reached. Before the release, Jane tags the files with the name of
the release:

jane@dev:/home/jane/f-api > cvs tag rel-1_0

If she needs to retrieve the release version at a later time, she can simply issue a cvs
checkout command on this tag:

jane@dev:/home/jane/f-api > cvs checkout -r rel-1_0 f-api

And voila, there’s release 1.0 again. It will be created in the ./f-api directory.

Branches are a bit more complex, but you can think of them as stricter tags.
Indeed, when you want to have a more rigorous separation of two code bases (which
are still related to a single project), you'd create two branches. To get back to our
example, John and Jane want to separate a development version of their API and a
stable version—just as in the Linux kernel development.

A new branch is created using the cvs tag -b command. To start a development
branch with the current code base, Jane executes this command:

jane@dev:/home/jane/f-api > cvs tag -b dev .

The name of the newly created branch is dev. To create a local copy of this branch,
Jane checks it out from CVS as she would normally, with a tagged version:

jane@dev:/home/jane/f-api > cvs checkout -r dev f-api

The difference between normal tagged files and branched files becomes apparent now:
All Jane’s further commands will act on this branch and not aftect the main, stable
branch. All commits, updates, and so on will use the dev branch, enabling her to work
on the development branch without altering the main branch. But be careful:
Maintaining different branches can be an administration nightmare. We suggest that
you use a maximum of three branches per project.

Tip: To see to which branch a file belongs, use cvs status.The Sticky Tag output
will contain the branch name and revision number.

A common task 1s merging a branch back into the main branch. From time to
time, Jane wants to add the new features from the development branch to the main
branch. This is done by first checking out the main branch and then applying the difts
from the development branch:

jane@dev:/home/jane/ > cvs checkout f-api

jane@dev:/home/jane/f-api/ > cvs update -j dev .
The -j (join) option in the cvs update command tells CVS to merge the differences
from the development tree to the local copy.

Tip: The main tree’s branch name is always HEAD. Knowing this, Jane could merge
the main tree to the local development branch by executing cvs update -j HEAD.

After having resolved potential conflicts, Jane can now commit her copy to the
main tree, and the backport is complete.

185

186 Chapter 5 Basic Web Application Strategies

Automated Notifications

At this point, Jane will have to inform her colleague again of the merge. As we’ve said,
CVS cannot replace effective communication within the team. But it can help.

The CVS server can be set up to perform a certain action on each commit.
Sending email to a mailing list server could be such an action. By setting up a mailing
list or alias group for each project, it’s easy to broadcast all commit messages, including
logs, to all project members.

To accomplish this, one of the CVS administrative files, namely the loginfo file,
needs to be edited. This file controls how commit information is handled—you can
send it by mail, but also log it to a file, store it in a database, etc.

You can alter the administrative files directly in the system’s CVSROOT directory. The
recommended way to change them is via CVS, though—this way you’ll have all the
regular features and the safety net of CVS.To start a session, check out the CVSROOT
directory:

jane@dev:/home/jane/ > cvs checkout CVSROOT

Then edit the loginfo file. The first part of a line is a regular expression that’s tested
against the directory or file being committed. If a match is found, the remainder of the
line is the program to be invoked. The program should expect the commit inform-
ation on standard input.You may also have one line in the file starting with DEFAULT
instead of a regular expression: This directive will be considered if no directory is
matched. Another special directive i1s ALL, which will be invoked in all cases. Two
examples for such lines:

“phpBook$ /cvs/loginfo_process_phpBook.sh

ALL /cvs/loginfo_process_all.sh
The first shell script, loginfo_process_phpBook.sh, is only invoked for the phpBook
repository. The second script, loginfo_process_all.sh, will be invoked on every
commit, regardless of the repository, because it’s marked with the ALL keyword.

As part of the program to be invoked, a set of special variables can be used to give
extended information about the commit. These variables are identified by a preceding
percent sign (%), similar to the format declaration in printf (). If more than one
variable is used, they must be grouped inside curly braces. The available variables are
shown in the following table.

Variable Meaning

s Filename

Y Version number before the commit
v Version number after the commit

As soon as you use one of these variables, another string containing the name of the
CVS module is automatically added before the variable.

CVS: Concurrent Versions System

To send mail to John and Jane, the following line could be used:

~f-api /bin/mail -s "CVS update: %s" -c john jane

But what if the commit message should also be logged to a file? CVS matches only
the first entry for a directory, so specifying another line for ~f-api wouldn’t help.
Without doubt, a shell script could handle it, but what if the routine should be
extended to log the message to a database later? Listing 5.2 shows how to solve this
problem with PHP. In the loginfo file, it’s called like this:

phpBook /usr/local/cvsroot/CVSROOT/Commit_Info.php3
="/usr/local/cvsroot/CVSROOT/logs/default.log" "CVS update %s" till tobias

This line tells CVS to invoke the script Commit_Info.php3 when a commit happens
for the phpBook repository. The script gets invoked with at least three arguments (four
in our example):

= A filename where a log summary for this commit should be stored.
= The subject line of the email message.

= The recipient(s). One recipient email address is required; simply provide a list of
addresses as shown in the preceding example if you want to send the message to
more recipients.

Listing 5.2 Mail and log a commit info message.

/] Check for correct number of arguments
if (count($argv) < 4)

{

print("Usage: Commit_Info.php3 logfile subject to-address [to-address
AU

print("\n");

print("A script to log and mail CVS commit messages.\n");

print(" From Web Application Development with PHP\n");

print(" Tobias Ratschiller and Till Gerken.

=Copyright (c) 2000, New Riders Publishing\n");

exit;
}

/] First argument is the logfilename
$logfile = $argv[1];

// Second argument is the mail's subject
$subject = $argv[2];

// Initialize the body variable
$body = "";

/] Get the commit message passed via stdin
$fp = fopen("php://stdin", "r") or die("Fatal Error: could not read from stdin.");
while(!feof($fp))

continues

187

188 Chapter 5 Basic Web Application Strategies

Listing 5.2 Continued

{

$body .= fgets($fp, 64);
}
fclose($fp);

// Mail the message to all specified recipients
for($i=2; $i<count($argv); $i++)
{
mail($argv[$i], $subject, $body);
}

/] Log the message

$fp = fopen($logfile, "a") or die("Fatal Error: could not write logfile
=($logfile) for writing");

fputs($fp, "$subject\n");

fputs($fp, "$body\n");

fputs($fp, "--r-re \n");
fclose($fp);

Why use PHP for such command-line scripting? Even if it was originally intended as
a Web scripting language, PHP has evolved in a way that allows it to be used for tasks
like this. By simply compiling PHP as a stand-alone binary, you can invoke it as a
script interpreter just like Perl. On UNIX systems, you can set the first line of the file
to the script interpreter:

"#!/usr/bin/php

By setting the executable bit for it, you can invoke it as any other regular executable
file on UNIX systems:

tobias@dev:/home/tobias/ > chmod +x script.php

tobias@dev:/home/tobias/ > ./script.php
On Windows, you can associate the file extension .php with the interpreter to achieve
the same result.

The script shows two important concepts often needed in command-line scripts:
accessing arguments passed to the script and reading from standard input. PHP
automatically sets up an array named $argv that contains the script’s filename as first
entry and as subsequent entries all arguments to the script. This is actually the same
behavior as in C. Just as in C, there’s another variable, $argc, containing the number of
arguments. Of course, you can also use count($argv). For example, if you call a PHP
script with php script.php3 foo, $argv[1] would contain the first argument, foo.

The other noteworthy part of the code is reading from standard input. PHP 4.0
allows you to use so-called PHP streams with fopen().To accept user input on the
command line or read in data passed from another program, php://stdin is used. The
script uses it to read the log message provided by CVS; you could also prompt for user
input with a similar function. Listing 5.3 shows it in action.

CVS: Concurrent Versions System 189

Listing 5.3 Prompt for user input using PHP input/output streams.

function readln()

{
// Initialize return value
$ret = "";
/] Read from stdin until the user presses enter
$fp = fopen("php://stdin", "r") or die("Fatal Error: could not read from
=stdin");
do
{
$char = fread($fp, 1);
$ret .= $char;
}
while($char != "\n");
return($ret);
}

print("Please enter your firstname:\n");
$firstname = readln();

print("You entered: $firstname\n");

The other available streams are php://stdout and php://sterr.This provides an
effective and platform-independent way of accessing standard input, standard output,
and the standard error-handling device. Indeed, this works even on Windows 98/NT.

The concept of PHP streams was introduced with PHP 4.0 and is not available in
the 3.x tree. On UNIX systems, you can work around this limitation by directly
accessing the UNIX devices /dev/stdin, /dev/stdout, or /dev/stderr. Of course, this
works only on systems with valid devices. Most current UNIX systems have it—
‘Windows is left out again.

If you use CVS to manage all your files on a Web site project—not only source
code but also images, archives, Flash, etc.—you’ll soon notice that there are some limits
with binary files. Text diffs don’t make sense on binary data—it’s usually not of much
interest to you which bits in an image file have changed.

CVS can indeed create problems when treating all files as ASCII. CVS treats certain
character sequences as keywords; for example

$Id: Basic_Web_Application_Strategies.xml,v 1.5 1999/12/15 15:49:55 tobias Exp $

and substitutes them on commit with the expanded counterpart, which may create a
mess with binary data.

190 Chapter 5 Basic Web Application Strategies

You can manually specify the -b option if you cvs add a file, but that soon
becomes a kludge to remember and use consistently. It would be easier if CVS could
enforce the binary type on some file extensions. Luckily, this is easy using the
administrative file cvswrappers. This file allows you to set up actions that will
transform files on each commit or checkout. It’s similar to the loginfo file in that it
will be invoked on a commit, but, unlike directives in the loginfo file, it can execute
actions that will alter the file in question. To treat images and archive files as binary, the
cvswrappers file could look like this:

*.gif -kb *.jpl[e]lg -kb *.png -kb *.gz -kb *.ta -kb *.zip -kb

This will automatically append the -kb to all CVS commands involving files matched
by the specified filter. The -k option prevents CVS from trying to use keyword
expansion; the -b switch indicates a binary file and disables the ability to produce text
difts for this file.

Sometimes you need to interface external command-line tools with the Web.
Many UNIX programs expect input on standard input and output the results of
the computation to standard output—for example, sort. The easiest way to pass
input and read output of the program is by using popen() and PHP streams.
popen() opens a unidirectional pipe to a program and allows you to pass data to
its standard input. And as you already know, you can use fopen() to read the

standard input, to which the external program will write. A simple example
could look like this:

// Open a writing pipe to the sort command
$fpout = popen("sort", "w");

// Open stdin with PHP-Streams
$fpin = fopen("php://stdin", "r");

/] Output some characters to sort
fputs($fpout, "a\n");
fputs($fpout, "c\n");
fputs($fpout, "b\n");

// Close the pipe to sort - sort will now process the input
// and write it to stdout
pclose($fpout);

/] Sort's stdout is stdin for us - so read it until feof().
while($c = fread($fpin, 1))
{
print($c);
}

Three-Tier Applications

CVS Quick Reference

While CVS features about 25 main commands, a multitude of options, and even more
possible combinations, in real life you usually need only a small set of commands. The
following table provides a quick overview that can serve as a reminder for the basic
commands.

Command Example Description

cvs login cvs login Logs into the CVS server; this will
ask for your password.

cvs checkout cvs checkout phpBook Gets a module from the CVS
repository. Usually used to check
out a module (entire directory
under the top level).

cvs update cvs update TOC.xml Updates your local copy of a file or
directory.

cvs commit cvs commit TOC.xml Sends your local version of files or
directories to the CVS server.

cvs add cvs add TOC.xml Adds a new file or directory to the
CVS server. The addition will be
completed the next time you
commit.

cvs remove cvs remove TOC.xml Deletes a file or directory from the
CVS server. The deletion will be
completed the next time you
commit. Note that this command
doesn’t actually delete a file; you
can still access older versions.

cvs status cvs status TOC.xml Shows the modification status of
your local version.

cvs diff cvs diff TOC.xml Shows the differences between two
versions of a file. The default is to
show the differences between the
local copy and the remote version.

cvs log cvs log TOC.xml Shows the CVS log messages for all
revisions of a file.

Three-Tier Applications

With larger development teams, effective means for organizing a project become vital.
By now, you've seen methods of handling the separation between layout and code,
organizing directory structures, and using a version-control system for managing the
source code. As soon as you talk about distributed development, phase separation, and
business processes, marketing people will jump on you and yell about multi-tier
applications. What all the fuss about?

191

192 Chapter 5 Basic Web Application Strategies

Traditional Client/Server

In the past, a traditional, non-Web application was responsible for handling everything
from user input to application logic to data storage. These three entities were
interwoven with each other, making it difficult or impossible to change one of them
without aftecting the others. If you wanted to provide such an application to multiple
users, you'd have a problem: What if the data format changes? What happens if you're
required to change the application logic? You’d have to provide all users with a new
local copy of the application, an unfeasible approach for larger systems.

With the advent of object-oriented analysis, design, and programming principles,
business applications became component-based. User interfaces were commonly
deployed on workstations, and data and application logic was hosted on a mainframe
server. The term client/server has been used to describe this separation of layers or tiers.
A two-tier client/server architecture provides a basic separation of tasks. The client, or
first tier, is responsible for the presentation of data to the user (user interface), and the
server, or second tier, is responsible for supplying data services to the client and
handling the application logic. So far, so good, but you see that the two-tier model still
combines two distinct concepts in the second tier (the server): data services and
application logic. The application logic is the heart of the program, responsible for data
validation, processing rules, etc.

The data services manage the application’s raw data and consist often of a relational
database management system (RDBMS) or a mainframe legacy system, in which a
company has already invested considerable time and money. The interweaving of these
two concepts in a two-tier application introduces problems of scalability, reuse, and
maintenance. Take the recent introduction of the Euro as the official currency
throughout the European Community: If an application hadn’t cleanly separated
application logic from data, both tiers would need to be changed. Hard-coded
currency values in the data validation were to be altered as well as the data-storage
format of currency amounts.

Using a multi-tier approach, all three concepts can be cleanly separated.

PHP and Multi-Tier Applications

The concept of multi-tier systems became popular in the early 1990s and is now
establishing itself as the enterprise application software architecture for the late 90s and
early 21st century. A multi-tier (often referred to as three-tier) architecture provides
greater application scalability, lower maintenance, and increased reuse of components.
Three-tier architecture offers a technology-neutral method of building client/server
applications with vendors who employ standard interfaces, providing services for each
logical layer. Look at the three-tier model in Figure 5.5—doesn’t it look familiar to
you as a Web application developer? In the first tier is a thin client—translated to the
world of Web applications, this would be the browser. The middle tier (application
server) is obviously PHP (and the Web server as host application), while the third tier
consists of an RDBMS.

Three-Tier Applications 193

I. Client (Ul

II. Application Server

Business Objects
(Java Beans) (COM Controls)

11l. Data Server

Figure 5.5 Multi-tier application layers.

Working with PHP leads to a basic three-tier model in such a coherent way that you
don’t even notice it. But there is (or was) a catch to using PHP as an application
server. Until version 4.0, PHP was not fully prepared to access third-party software
objects and was therefore not the best tool to use in business scenarios with similar
requirements. This has changed, and we feel this is one of the most dramatic points in
the evolution of PHP. The current version allows you not only to access COM
controls on Win32 systems, but also to execute Java methods on any system with a Java
Virtual Machine (JVM).

There are three standard architectures for such enterprise-wide object reuse:
(D)COM from Microsoft, JavaBeans/RMI from Sun Microsystems, and CORBA from
the Object Management Group. The most widely used at this time is COM, because
of the broad use of Windows systems (see the next section for details on using PHP
and COM). However, enterprises with heterogeneous environments will prefer Java or
CORBA for their wider platform support.

For example, JavaBeans (and alternatively COM objects) are available to access SAP
R /3 systems through their Business API (BAPI) interface, enabling you to integrate
the SAP business framework into your application server layer. Think about the
possibilities this would introduce to an e-commerce system:You could effectively
combine a front-end online shop with the enterprise warehousing application in the

back end.

194 Chapter 5 Basic Web Application Strategies

PHP and COM

The Component Object Model (COM) is a software architecture developed by Microsoft
that allows abstracting software chunks into binary components. COM defines a
standard for component interoperability and specific features a component must have.
It doesn’t depend on any programming language; indeed, Microsoft shows efforts to
establish COM as an open IETF (Internet Engineering Task Force) standard. COM
objects can be accessed by any compliant application and programming language; for
example, from Visual Basic, Delphi, or PHP.

The question COM addresses is this: How can a system be designed in such a way
that binary software components from different vendors can interoperate? Microsoft’s
first proposed answer to this question, the concept of DLLs, failed miserably. Because
of the missing versioning in DLLs, no two DLLs exposing the same interface could be
used on a single system. Let’s make up an example. Say you’ve got a server-monitoring
application that continually checks whether a server is down and logs the collected
data.You have a front end with pretty statistics and some logic to react in an
appropriate way if the server is unreachable. The back end of the software could be a
DLL performing the actual monitoring: Let’s say that ServerSpy.d11 exposes a
function is_reachable(), taking a server name and returning true if the server is
reachable or false if it’s not.

We haven’t defined what kind of server to monitor yet—indeed, it could be a Web
server, mail server, name server, or any other system, and the function declaration itself
as well as the back end wouldn’t need to be changed. The only part needing a change
would be the implementation of the function is_reachable().

With DLLs, you could have exactly one monitoring service on the system—either
Web server spy or mail server spy, etc. If you install another DLL, it would overwrite
the previous one.

Your application couldn’t let the user choose between available monitoring
services. Nor would it be possible to have a different version of one service available
on the system. If another software vendor created a better implementation of
ServersSpy.dll and sold that to your customer, it would again overwrite your version
of the DLL. If the function worked exactly the same, all would be great—otherwise,
your application would stop working.

A proper component model tries to solve these problems. COM provides a way to
identify components through a globally unique ID (GUID), allowing you to use many
services concurrently—the operating system knows all installed components and your
application could query it for components in the category “Server Spy monitoring
services.” COM provides versioning, allowing you to have different versions of a
component on the system without affecting each other.

And finally, it provides component introspection, allowing you to see which
methods and properties a component exposes.

You probably have heard of ActiveX controls. ActiveX controls, also known as OLE
controls or OCX because of Microsoft’s creative marketing department, are simply an
application of COM components. They provide a reduced set of COM interfaces so

Three-Tier Applications

that they’re smaller and better suited for use on high-latency networks.You can use
ActiveX controls almost the same way as full-fledged COM controls.

Then there’s DCOM, the Distributed Component Object Model protocol, which
introduces COM components to the world of distributed network applications.
Basically, it’s a protocol for object-oriented remote procedure calls useful for
distributed, component-based systems. PHP 4.0 works with both COM and DCOM
on Win32 systems. At this time, it doesn’t work on other platforms where COM
would be available (such as Apple or Solaris).

Invoking (D)COM controls with PHP 4.0 is very easy. COM is a reserved class name
that you can instantiate by passing the control’s name to the constructor.You then have
a complete instance of the COM object where you can execute functions or set and read
properties as if it were a PHP class. For properties that can’t be expressed using PHP
syntax (for example, because they contain a dot or other characters invalid for PHP),
you can use the following helper functions:

= bool com_set(class com _object, string property name, string
property value)

Assigns a value for a property on the COM object instantiated in com_object.
Aliases for this function are com_propset() and com_propput (). Returns true on
success and false on error.

= mixed com_get(class com_object, string property name)

Returns the value of a property on the COM object instantiated in com_object.
Alias for this function is com_propget (). Returns the property’s value on success
and false on error.

The source code in Listing 5.4 shows the basic use of the COM feature. It creates an
instance of the COM class using the Softwing.EDConverter component, a freely available
currency-conversion utility. Then the member method Triangulate() is invoked and
the returned result displayed. It can’t get much easier...

Listing 5.4 A basic COM example.

$amount = 1000; // Amount to be converted
$curr_from = "DEM"; // IS0 currency symbol of original currency
$curr_to = "ITL"; /| Symbol of the target currency

// Instantiate new COM object
$conv = new COM("Softwing.EDConverter") or die("Unable to instantiate
=Euro-Converter");

// Execute a component method on the COM object's instance
$ret = $conv->Triangulate(10000, "ITL", "DEM") or die("Exception triggered by
=Triangulate() on line "._ LINE_);

// Print the result
print($ret);

195

196 Chapter 5 Basic Web Application Strategies

To create an instance of a DCOM component on a remote system, pass the
hostname as second argument to the constructor. For example:

$comp = new COM("My.Component", "remote.server.com");

In PHP 3.0, you can’t use the COM class; instead, you need to use the com_load(),
com_invoke (), com_set(), and com_get() functions. Our example would look like
Listing 5.5.

Listing 5.5 A basic COM example with PHP version 3.0.

$amount = 1000; // Amount to be converted
$curr_from = "DEM"; // IS0 currency symbol of original currency
$curr_to = "ITL"; // Symbol of the target currency

// Instantiate new COM object
$conv = com_load("Softwing.EDConverter") or die("Unable to instantiate
=Euro-Converter");

/| Execute a component method on the COM object's instance
$ret = com_invoke($conv, "Triangulate", "10000", "ITL", "DEM") or
=die("Exception triggered by Triangulate() on line "._LINE_);

// Print the result
print($ret);

The syntax of these functions (that are not available in PHP 4.0) is as follows:
= int com_load(string component_name)

Instantiates a COM component and creates a reference to it. The returned integer
value must be used in the following com_*() calls. Returns false and throws a
warning if an error occurs.

= mixed com_invoke(int com_identifier, string function_name[, mixed
argumenti[,...]])

Invokes a COM component’s method and returns the method’s return value. The
first argument of the function is a valid COM identifier as created with
com_load().The second argument must be the name of a component method.
As optional third and following arguments, you can specify arguments for the
invoked method. This function returns false on error.

Three-Tier Applications

= bool com_set(int com_identifier, string property name, string
property _value)

Assigns a value for a property on the COM object instantiated in com_object.
Aliases for this function are com_propset () and com_propput (). Returns true on
success and false on error.

= mixed com_get(int com _identifier, string property name)

Returns the value of a property on the COM object instantiated in com_object.
Alias for this function is com_propget (). Returns the property’s value on success
and false on error.

PHP and Java

Java, the “language du jour” for many corporate software developers, is increasingly
being used in all areas of development. Since version 4.0, PHP can be compiled to
support the calling of native Java functions, effectively enabling you to use enterprise
Java components in a multi-tier environment.

Installation of the Java support is not difficult. You have to keep the following
things in mind:

= You need to install a Java Virtual Machine (JVM) on your system first; we have

used the freely available Open Source Kafte 1.0.5 implementation.

= PHP needs to be compiled as DSO with APXS, meaning that it will be loaded
as a shared module into Apache.You can find instructions for this in the
INSTALL.DSO file of the PHP distribution.

Please look at the README file in the ext/java directory for additional instructions.

Once you have the Java support in PHP, the syntax is similar to the one invoking
coM components. Indeed, both make use of an advanced Zend internal feature called
object overloading. The term overloading in software engineering means that a construct
can react differently depending on the context. Function overloading consequently
means that a function can be different depending on the order or type of the
arguments.

For example, in C++ you can have two function declarations similar to these:

void add(int Left, int Right);

void add(double Left, double Right);

Depending on whether you pass an int or double value to add(), the respective
function will be called. Developers usually try to avoid such ambiguity, though, as it
can be a nightmare to debug.

The Zend engine allows similar function overloading internally and uses it to
realize object overloading. Depending on the context (the class name, for example), an
object can mean quite different things: It can be a normal user-defined class, but it can
also be something much more sophisticated like a COM or Java interface.

197

198 Chapter 5 Basic Web Application Strategies

Much like with COM, creating a new Java object is done by instantiating the
overloaded Java class. The constructor argument is the Java class to be used:

$system = new Java("java.lang.System");

On the returned object, functions can be used in the same way as with COM objects.
To read and write properties, you have to use helper functions (remember, with the
coM module, properties can be accessed directly), getProperty() and setProperty():

$system = new Java("java.lang.System");
printf("Java version = %s\n", $system->getProperty("java.version"));

Summary

In this chapter, you've learned about the basic strategies common to all Web
applications. You know how to deal correctly with user input, and how to validate
forms and verify their contents. You can make use of templates to separate code from
layout; moving on from there, you know how to coordinate your team efforts and deal
with more than one person working on a single file. The benefits of version-control
systems have been discussed, and you can structure your projects on disk in a clear
manner. You can make advanced use of the flexible CVS system. Finally, multi-tier
applications have been discussed that also implement interfaces to foreign languages.

Equipped with this knowledge, you are now able to face the design and
implementation of cutting-edge applications in later chapters.

Database Access with PHP

When you handle the master carpenter’s tools,
chances are that you’ll cut your hand.

A DATABASE IS A WEB DEVELOPER’S DAILY TOOL, and he or she should know SQL
at least as well as PHP. Most data models of Web applications involve a relational
database. While novice users may try to avoid the perceived overhead of SQL and a
relational database management system (RDBMS), the advanced developer appreciates
the features it provides. Anything nontrivial—for example, concurrent accesses,
searching and sorting, or allowing relations between different datasets—quickly
becomes a pain when using storage methods like flat files or arrays. Databases are built
for efficient organization and retrieval of data, and in most cases there’s no need to
mimic this feature set in pseudo database systems.

This chapter introduces you to accessing databases with PHPLib, and shows two of
the many features of this library: user authentication and permission management.

200 Chapter 6 Database Access with PHP

PHPLib: The PHP Base Library

As we’ve already mentioned earlier in this book, the PHPLib can save you a
considerable amount of hassle in your daily programming routine. Some concepts will
show up again and again when developing Web applications: session management,
authentication, separation of layout from code. The PHPLIib is a solid set of objects
that provide solutions for these necessary tasks.

For many programmers, the PHPLID is intimidating when looking at the docu-
mentation and the examples. Indeed, it is a complex set of classes, and the different
objects are dependent on each other in a nontrivial way. However, once you have
mastered the installation and the writing of your own base classes, it’s not at all difficult
to use, and you’ll see examples that are straightforward and easily understandable.

The PHPLIib can currently be found at http://phplib.netuse.de/. Its documen-
tation provides detailed installation instructions, so we won’t rephrase that here; we’ll
assume that you have a properly set up PHPLib environment, with prepend.php3
prepended to every script automatically (this is the setup recommended in the docu-
mentation). Also, we won't include a description of each function and property in this
chapter, as the documentation does—instead, we’ll try to show you the big picture and
explain the PHPLib with our own words.

History

The first development of PHPLib was performed by Boris Erdmann and Kristian
Koehntopp in 1998. Working on a large project at an ISP in Kiel, Germany, they
realized that they were programming the same procedures again and again. The way in
which they solved these problems was not very satisfying.

For example, they needed a login procedure that wasn’t based on HTTP Basic
Authentication, because this authentication method is neither secure nor user-friendly.
For proper authentication, they needed working session management (as we've
outlined in Chapter 4, “Web Application Concepts”). So they began to develop an
object-oriented library for session management and authentication, building on an
idea for session management by Karl-Heinz Wild. As with many Open Source
projects, more and more people joined this project over time, and it grew very quickly.
Today, the PHPLib contains modules for many aspects of authentication and session
management, but also methods to create HTML input forms, tables, and trees.

Advantages and Disadvantages

As we said in Chapter 1, “Development Concepts,” you should choose your weapons
carefully. The PHPLIb is best suited for projects taking more than two days to develop.
The first use of the library will cause you more work than usual: It takes time to read
the documentation, it takes time to understand the concepts, and it takes time to
resolve your mistakes.

PHPLib: The PHP Base Library 201

The PHPLIb seems to be ideal for projects with more than one software developer.
It forces the programmers to use similar interfaces, and it encourages object
orientation, which can at least bring a better structure to an application. Also, as the
PHPLIib requires some understanding of more advanced aspects of PHP and Web
applications in general, it takes developers in a team to a comparable knowledge level.

Because the PHPLIb is written in native PHP, it isn’t as fast in operation as a C
extension of PHP. On the other hand, this makes it more flexible. Because the libraries
are written as classes, you can easily make changes to fit it for your needs. Indeed, you
will need to make some changes: The PHPLIib is not a packaged product ready for use.
You should be aware that you need to provide some functions yourself.

The dependencies between the different PHPLib classes are complex; for example,
you can't use the session-management functions without using the database abstraction
layer part of the library. If you just need session management, you may be better off’
using PHP 4.0’s session functions or our PHP 3.0 backport. Nevertheless, please read
on—the PHPLib has some features that can definitely make your life easier.

Important Files

In the PHPLib distribution, there are two files that you’ll probably need to change:
local.inc and prepend.php3.

The file prepend.php3 loads the files that should be available on all pages using the
PHPLib. By default, it loads the database back end for MySQL and uses the SQL
storage container for session management. To switch from MySQL to Postgres, for
example, you would need to change the line

require($_PHPLIB["libdir"] . "db_mysql.inc"); /* Change this to match your

=database. */

to include db_pgsql.inc instead of db_mysql.inc.

If you use other classes from the PHPLib (the Template class, for example), it’s
recommended that you include them in prepend.php3.

The local.inc file is where the customization of PHPLib is done.

Customizing the PHPLib

The base classes of the PHPLib aren’t used directly in most cases; you define your own
derived classes instead, which are customized to fit your environment. There are
already default implementations shipping with the PHPLib, which we will use later in
our code examples. These implementations make certain assumptions about your
system; for example, that you use MySQL. If these assumptions don'’t fit for your
application, the file local.inc is the place to make changes; the recommended
technique is to create a new object as extension to DB_Sql. By doing so, you avoid the
need to set these configuration variables in every application—instead, you define
them once in the class.

202 Chapter 6 Database Access with PHP

You're advised to adjust local.inc for your own needs, and you should at least
change the name of the Example_Session class; its name is used as the name of the
session cookies and passed in the URL in GET mode—it doesn’t look very
professional if Example_Session shows up in your URL.

Database Abstraction

A database abstraction layer 1s an API to provide a set of functions to deal with a
multitude of databases in an implementation-independent way. By changing the back
end of the database abstraction layer, you can easily switch from MySQL to Oracle, for
example. Perl’s DBI (DataBase Interface) is such a layer, and one of the most well-
known features of the PHPLID is its database abstraction layer organized in the DB_Sql
class.

Portability

For a professional Web application programmer, database abstraction can be useful and
important. The base of every application is its data-model, a set of data structures for
general-purpose usage, often contained within a database. While PHP supports a great
number of databases, every database has a different application programming interface
(API). Using these native APIs, operating system and database-independent
development is impossible—if you want to port an application from MySQL to
Oracle you have to be prepared for some heavy work, unless you use an abstraction
layer like the PHPLib. Table 6.1 shows how database interfaces can differ from system
to system.

Table 6.1 APIs to Access MySQL and Oracle

Description MySQL Oracle 7

Connect mysql_connect() ora_logon()

Query mysql_query() or ora_parse(), then
mysql_db_query() ora_exec()

Get next row of result or mysql_fetch_array() Works with offsets:

ora_columnname(),
ora_getcolumn()

Number of rows in a mysql_num_rows () Not possible, as Oracle starts

result set to return rows prior to
knowing the total number
of rows in the result set.

Last inserted primary key ID mysql_insert_id() No equivalent in PHP
functions.

Database Abstraction

Of course, you usually don’t change your database in a weekly rhythm, so this may not
be of much importance to you. Also, portability between databases is only a dream even
if you use the PHPLIb, if you haven’t planned it in your project from the beginning.
Real life shows that the problem is not porting the AP, but the database-specific
functions.You can create truly portable database code only by accepting that you can’t
use specific features of an RDBMS—but then you end up re-creating that feature in
your code, which may lead to applications that are harder to maintain and slower.

If your aim is to program portable code, you have to work around the specialties of
the underlying database. The PHPLib can make this task a bit easier; for example, it has
built-in sequence handling and a simple table-locking mechanism, which work in a
database-independent way. Lately, the PHPLib developers have added the class Query,
which is intended to abstract simple queries (inserts, updates, WHERE statements, and
some others, which cover about 80% of the normal database usage), to make them
database-independent. Currently this class works for MySQL and Oracle 7 (and up) only.

Two other features of PHPLib’s database abstraction layer are at least as important
as portability, and those are real time-savers in your daily applications. The following
sections describe these features.

Debugging Mode

The class DB_Sql has a debug mode that allows you to see what queries are sent to the
database. To switch debugging on, just insert $db->Debug = true; in your program
after having instantiated the class. In our programs, we typically have a global DEBUG
constant, which we assign to the DB_Sql class in a similar way:

define("DEBUG", true);

$db->Debug = DEBUG;
When debugging is switched on, the DB_Sql class will print out some values from
function calls and much additional information. This can be a great help if you’re
searching for an error, or if you want to verify that the SQL queries your script is
generating are correct.

Error Handling

The PHPLib takes care of handling all errors that could result from database-related
functions. As a positive side effect, the code you write using DB_Sql is more compact,
because you don’t have to bother with error handling yourself.

With the default settings, a script stops at every error it encounters. This can be
controlled by changing the class variable $Halt_On_Error, which is set to yes by
default. Setting it to report causes the library to print the error without exiting the
script. Setting this variable to no instructs the library to ignore all errors. This may
result in unwanted side effects, for example in inconsistent data, when a failing
database query is ignored—so be careful with this option. In production applications,

203

204 Chapter 6 Database Access with PHP

error messages should be informative and appear in a common layout, adjusted to the site’s
corporate identity. To apply your own formatting to error messages, you can create a new class
extending DB_Sql and override the function haltmsg() there. Because this function controls the
output of all error messages, it’s easy to customize messages this way:

class test_db extends DB_Sql

{
function haltmsg($msg)
{
print("Database Error: $msg
");
printf("MySQL said: %s
", $this->Error);
}
}

The haltmsg() function is solely responsible for outputting the error message; actually stopping
the script or cleaning up after an error is left to the PHPLib. The function is invoked only if
$Halt_On_Error is set to either yes or report.The variable $msg, passed as argument to haltmsg(),
contains a verbose description of the error encountered. You can also access $this->Error and
$this->Errno to retrieve the messages produced by the database engine.

DB_S8ql Example

A short example will show you best how the Db_Sql class is used. The source code in Listing 6.1
connects to a database and displays the whole contents of a single table. It uses the Example_Db class
defined in local.inc, which extends Db_Sql and forms a reference implementation of how you
can create your own customized classes. For simplicity’s sake, we use the sample implementations
from the PHPLIib distribution in the following code snippets.

Listing 6.1 First simple example of how to use DB_Sql.

/] Instantiate Example_DB class
$db = new Example_ DB;

/| Connect to RDBMS
$db->connect ("test", "localhost", "root", "");

/| Create SQL statement
$sql = "SELECT * FROM test";

/| Execute query
$db->query($sql);

// Loop through result set

while($db->next_record())

{
/] Loop through the $db->Records hash
while(list($key, $value) = each($db->Record))
{

/] Print only non-numeric indexes

Database Abstraction

print(is_string($key) ? "$key: $value
": "");
}

print("<p>");

The first line creates a new instance of the DB_Sql class. By default, this class is defined
in the file db_mysql.inc (loaded in prepend.php3) and uses MySQL as database
engine.

The next step is connecting to the database. Of course, you have to change the
values to your settings; in this example, we connect to the database test on localhost,
with the username root and no password.

You can also set these properties explicitly using their respective class variables:

$db = new Example_Db;

$db->Database = 'test';

$db->Host = 'localhost';
$db->User = 'root';

$db->Password = '';

At the call of $db->query () PHPLib will notice that no connection has been
established yet and will open one automatically, using the values defined earlier in
these class variables.

Our example continues with $db->query (), which handles everything you need to
send a query to the database. It connects to the selected database (if not already done),
and it handles errors that could happen. If we had set $db->Debug to true, this function
would output the SQL query before sending it to the database.

Then $db->next_record() is called in a while loop. This function gets the next row
from a set of results and stores the retrieved row in the array $db->Record. If there are
no more rows in the result set, the function returns false, terminating the loop.

The second loop traverses the $db->Record array and outputs the field names
along with their respective contents. Because this array contains the contents
with both a numeric index (similar to arrays returned by the default usage of
mysql_fetch_array()) and the field name as key, we make sure to output only the
array entry where the index is a field name.

Compare the PHPLib example in Listing 6.1 with the example of traditional
programming in Listing 6.2. They’re approximately the same length, but the PHPLib
example inherits all the advantages we explained earlier. By changing one file, you can
change the underlying database layer. You have more powerful error handling than in
the other example; by changing one class variable, you can instruct the PHPLib to halt
on errors, report them, or ignore them, while the traditional example simply exits on
error. And last, but not least, you have complete debugging support built in.

205

206 Chapter 6 Database Access with PHP

Listing 6.2 Example of traditional programming.

/| Connect to RDBMS
$link = mysql_connect('localhost', 'root’,

') or die(mysql_error());

/| Select database
$db = mysql_select_db('test') or die(mysql_error());

/] Create SQL statement
$sql = "SELECT * FROM test";

/| Execute query
$res = mysql_query($sql) or die(mysql_error());

/] Loop through result set
while($row = mysql_fetch_array($res))

{
// Loop through the $db->Records hash
while(list($key, $value) = each($row))
{
/] Print only non-numeric indexes
print(is_string($key) ? "$key: $value
": "");
}
print("<p>");
}

Be aware of one possible trap:You should restrict yourself to using one database per

application. PHP has problems handling access to different databases in one script—

especially with MySQL. PHP assumes that it can silently reuse connections that have
been established using the same username and password. Look at the following

example:
$res_one = mysql_connect("localhost", "root", "") or die(mysql_error());
$res_two = mysql_connect("localhost", "root", "") or die(mysql_error());

You would expect that you had two different connection identifiers here, right? You
haven’t, though, as PHP reuses the open connection in the second mysql_connect()
call. Printing the connection identifiers, $res_one and $res_two, will output the same
resource identifier for both variables. The implication of this behavior is that using
mysql_select_db() on one link will also change the context on the other connection.
This also applies to the objects in the PHPLib: Using one database for DB_Sql and a
different database for the session data will result in problems. Unfortunately, at this
time there’s no workaround for this problem.

Database Abstraction

Sessions

The PHPLib provides at least equivalent functionality to PHP’s built-in session
management library; even the names of the functions are often the same. While it is
similar in many ways to PHP’s internal session management, it’s not identical. One
nice additional feature is the automatic fallback mode (described in the following
section).

Automatic Fallback

By default, the session management works with cookies. As outlined in the “HTTP
and Sessions” section of Chapter 4, this should be the preferred technique (when
supported by the client), and it’s the easiest method of session ID propagation. But you
can change it to the GET/POST method by changing one variable, $mode. The $mode
variable defines which method should be used as the primary method of session ID
propagation. It can be either cookie or get; the default value is cookie.

The PHPLIb provides an automatic fallback mode at runtime. If the variable
$fallback_mode is set to get, the GET/POST mode will be used when the preferred
mode specified in the variable $mode (usually cookie) is not supported by the client.
Setting $mode to cookie and $fallback_mode to get makes the most sense. The
PHPLIib will try to use cookies; if they’re not supported, it will fall back to the
GET/POST mode. In detail, the PHPLib checks for cookie support in this way:

1. On the first request to a PHPLib-powered page, the PHPLIb tries to set the
session cookie named after the Session class instance.

2. Next, it redirects the user to the same page with the session ID appended as
query string, using the following code:

header("Location: ". $PROTOCOL. "://".$HTTP_HOST.$this->self _url());

3. The PHPLib checks whether the session ID can be found in the
$HTTP_COOKIE_VARS array. If so, the session remains in cookie mode. If the
session ID can’t be found, the client doesn’t accept cookies and the session
switches to get mode.

Page Caching

The Session class also allows you to control how pages are cached. Its class variable
$allow_cache can be set to no, private, or public. Its default value depends on the
version of the PHPLIb; for example, with release 7.2 it’s set to private, with
subsequent versions it’s set to no. The page-caching mechanism is very similar to the
one provided in the native session functions of PHP 4.0.

207

208 Chapter 6 Database Access with PHP

Serializer

In PHP 3.0, you couldn’t serialize objects easily. The serialize() function didn’t
preserve class methods properly, and there was no way to do it manually. The PHP 3.0
support for objects was missing one important thing: introspection. There was no way
to get the name of a class or the name of its parent class. Therefore, the PHPLib
needed to use a workaround: It simply required classes to have two additional values,
$classname and $persistent_slots, which contained the name of the class and the
class variables to be serialized, respectively. Knowing the class name, the PHPLib could
create PHP code instantiating the class ($class = new class;) and store it in the
session data repository. When the session data was reactivated, this code was executed
with eval(). Do you remember the self-modifying counter example from Chapter 2,
“Advanced Syntax”? The PHPLib uses the same concepts.

Note: With PHP 4.0, these workarounds are no longer necessary. PHP 4.0 has
functions like get_class() and get_parent_class() to allow better class introspection.
And serialize() now works transparently on objects.

Session Example

In your daily work, using the PHPLIb session object is just as easy as using the PHP
4.0 session library. The example in Listing 6.3 reflects this; it does the same work as
the example in Chapter 4:

Listing 6.3 A basic example of using PHPLib’s Session class.

/| Create a new instance manually
$sess = new Example_Session;

/] Start the session
$sess->start();

/| Register our session variable
$sess->register("counter");

// Init the counter
if(!isset($counter))
{

$counter = 0;

}

/] Output session ID and counter
printf("Our session ID is: %s
", $sess->id);
print("The counter value is: $counter");

/1 Increment the counter
$countert+;

/| Save the session state
$sess->freeze();

Database Abstraction

The only significant difference between this example and the PHP 4.0 example is that
the PHPLIib uses an object-oriented approach.

Like the PHP 4.0 session library, the PHPLib uses storage modules (called containers
in PHPLib terminology) to store session data. The container classes all start with a CT_
prefix. An SQL database is the most common way to store session data, but the
PHPLIib also knows other container classes.

The available container classes in PHPLib 7.2 are as follows:

= CT_Sql is the default container and stores the session data in a database. It has the
following class variables:

Name Description

$database_class The name of the DB_Sql class, which should be used to
connect to the database.

$database_table The name of the table that will be used to store the
session data.

$encoding_mode This variable controls how the session data is stored. It
can take two values: base64 or slashes. Normally you
shouldn’t change the default value (base64); this way,
session data will be encoded with Base64 prior to being
stored in the database. For debugging purposes, you may
want to use the alternative method, slashes, to store
session data as plain text in the table.

= In terms of features, CT_Split_Sql is identical to CT_Sql. It must be used if the
underlying database is unable to store enough data in one field for the session
data, especially if the database has problems with binary large objects (BLOBs).
CT_Split_Sql is not compatible with the tables of CT_Sql.

To change the length at which the class splits up the session data, you can use
the variable $split_length, whose default value is 4096 (4KB).

= CT_Shm stores session data in shared memory.You need to have compiled PHP

with shared memory support in order to use this. This container is faster because
it stores session data directly accessible in memory. The drawbacks are that if you
have to restart your server for any reason, all session data is lost. Also, the number
of concurrent sessions is limited due to the memory consumption. Each session
takes up a certain amount of memory (the amount depends on the quantity and
size of the session variables), and after all available memory has been consumed,
no more new sessions can be created.

209

210 Chapter 6 Database Access with PHP

These class variables are different from those of CT_Sq1:

Parameter

$max_sessions

$shm_key

$shm_size

Description

Maximum number of simultaneous active sessions. The
current default is 500.

Unique key for the shared memory segment that should
be used. It’s important to make this key unique for each
application.

The size of the shared memory segment in bytes. This
size could be calculated approximately with the formula
shm_size = max_sessions * session_size, where the
session size could be an average size of about 600 bytes.
The default value 1s 64000 (64KB).

= CT_Dbm uses a UNIX DBM file to store session data. This type of database stores
data as key/value pairs in regular files on a system. The only variable you should
set is $dbm_file, which is the filename of your DBM file. The file has to exist
with the proper rights; the server needs write access to it.

= CT_Ldap stores session data in an LDAP (Lightweight Directory Access Protocol)
server. PHP has to be compiled with LDAP support to use this container. The
CT_Ldap class has the following properties:

Item

$ldap_host, $1dap_port

$rootdn, $rootpw

$basedn

$objclass

Description
Hostname and port number of the LDAP server.

Root distinguished name and password of the LDAP
server, used to connect to it.
Below this distinguished name, the session data should

be stored.

Name of the object class (can be compared with an

SQL table name).

If you look at local.inc, you'll see a series of class definitions; three of them actually

concern our example:

class
var
var
var
var

}

class
var
var

DB_Example extends DB_Sql {

$Host
$Database
$User
$Password

"localhost";
"phplib";
"tobias";
"justdoit"”;

Example_CT_Sql extends CT_Sql {
$database_class = "DB_Example"; ## Which database to connect...
$database_table = "active_sessions"; ## and find our session data in this

class
var

var
var
var
var
var

var
var

}

Example_Session extends Session {

$classname = "Example_Session";

$cookiename =
$magic =
$mode =
$fallback_mode =
$lifetime =

$that_class =
$gc_probability =

H
"Hocuspocus";
"cookie";
"get";

0;

Database Abstraction

defaults to classname
ID seed
We propagate session IDs with cookies

0 = do session cookies, else minutes
=until the session expires

"Example_CT_Sql"; ## name of data storage container

5;

As you can see, the classes form a relation; in the Example_Session class, the variable

$that_class is set to the name of the Example_CT_Sql class, and in Example_CT_Sql,
the $database_class variable points to the class DB_Sql. Figure 6.1 shows this
relationship in detail.

Session

uses

CT_sql

Y

uses

DB_Sql

Contains code to manage session IDs, serializing
of variables, and cleanup of old sessions

Contains SQL queries to load and store
sessions, authenticate users, and many others

Takes over the communication with the database, error
handling, sequences, locking, and some others

Figure 6.1 Relationship model of the classes DB_Sql, CT_Sql, and Session.

Our example didn’t use the base classes, but extensions of them as defined in

local.inc. Figure 6.2 shows these dependencies.

Figure 6.2

P extends
Session < Session_Example
uses uses
Y Y
P extends
CT_Sql < CT_Example
uses uses
Y Y
. extends
DB_Sql < DB_Example

Dependencies and relationships in the example.

211

212 Chapter 6 Database Access with PHP

Abbreviations I: page_open()

Let’s assume that you want to develop a larger application, using session management,
database abstraction, and PHPLib’ authentication and permission-management
features. So you need to instantiate the session, authentication, and permission objects.
Your local.inc file will look something like this:

$sess = new Session_Example;
$sess->start();

$auth = new Auth_Example;
$auth->start();

$perm = new Perm_Example;

$user = new User_Example;

$user->start();

Because the classes depend on each other, you have to initialize them in the correct
order, and you cannot instantiate User_Example unless you have a session and an
authentication instance. And that’s not all. The end of your program depends on what
classes you opened earlier; the order in which the classes’ cleanup routines are called is
important.

The PHPLib helps you with the functions page_open() and page_close().The
documentation calls them page-management functions, and indeed they can handle all
work related to PHPLIib initialization and shutdown. Using these two functions, we
can shorten our example considerably:

page_open(array("sess" => "Session_Example",

"auth" => "Auth_Example",
"perm" => "Perm_Example"));

[...]

page_close();

The page_open() function in the example creates instances of Session_Example,
Auth_Example, and Perm_Example, named $sess, $auth, and $perm, respectively. You
can now use these instances directly, for example with $sess->register().

Note: The page_open() function must be called before all output, as it will set a
cookie and other HTTP headers.

Abbreviations II: purl(), url(), and pself()

If your application uses cookie as the main mode of session ID propagation, and get as
fallback mode, you need to tag all of your links with the session ID.To use any of the
other methods for session ID propagation that we outlined in Chapter 4, you'd have to
extend the PHPLIib to accept another value for $mode.

Authentication

But the PHPLib makes even manual URL rewriting a lot easier. It provides the
url() function, which appends the session ID to links when in get mode:

$link = $sess->url("script.php3");

If your session is currently in get mode, the resulting $1link variable would look
something like this:

script.php3?Example_Session=2e4c3670ce9ai143fee398aec282f960c

The function handles even query strings correctly; it wouldn’t get confused if you
called it with an URL containing a parameter, for example script.php3?foo=bar.

As a shorthand for printing the resulting link, you can use PHPLib’s purl()
function, which works the same way as url() but also outputs the generated URL.
Similarly, self_url() and pself_url() generate and output (with the latter function) a
tagged link to the current file.

Authentication

The “Authentication” section of Chapter 4 mentioned that HTTP Basic
authentication has a number of drawbacks, and that you can avoid those with PHP-
based authentication. The following sections provide details.

Advantages of PHP Authentication

This section continues where we left off in the “Authentication” section of Chapter 4.
We discussed there that HTTP Basic Authentication has a number of drawbacks, and
that you can avoid those with PHP-based authentication. The PHPLIib features
sophisticated classes for handling user authentication and permission management.

The PHPLIb authenticates sessions; thus it depends on the Session class. On those
pages in which you need authentication, the following page_open() call should be
made to instantiate a session and authentication object:

page_open(array("sess" => "Session_Example", "auth" => "Auth_Example"));

Being based on sessions introduces a number of advantages for the authentication:

= The username and the authentication element are sent only once, at the login.
Once authenticated, the server stores the authentication data inside the session,
and doesn’t transmit username or authentication element again. This is different
than in HTTP Basic Authentication, where the username and password are
transmitted in the HTTP headers of each request. But it also means that, if you
lose the session, you lose the authentication.

= The authentication procedure on the server can be complex. It can use any
database or any other mechanism you can think of. The authentication is
handled by an undefined function of the Auth class (auth_validatelogin()) and
you have to implement it.

213

214 Chapter 6 Database Access with PHP

= It not limited to a whole directory, but can be difterent for individual files of
the application, and can even implement authentication levels inside a script. It’s
possible to hide parts of the script from users who are not allowed to access
them.

= Users who aren’t known to the system can register themselves before logging in.
A registration form is offered and the PHPLib will automatically create a
standard entry in the user database.

= Authentication via PHPLib works even with the CGI version of PHP.

= You can log users out cleanly. This means that you can give your users the
chance to terminate the current sessions (a logout button).

= Users can be logged out automatically after a certain idle time. Doing so
provides additional security for your application, because you can prevent session
hijacking after a longer idle time.

Auth Example

Let’s go ahead with a basic example. The example in Listing 6.4 shows the default
PHPLIib login screen when you call it for the first time. Log in with the PHPLib

default username/password pair of kris/test. After you have been authenticated,

you’ll see your session ID, your username, and your permissions.

Listing 6.4 A basic example of how to use Auth.

page_open(array("sess" => "Example_Session", "auth" => "Example_Auth"));

printf("Your session id: %s<p>\n", $sess->id);
printf("Your user ID: %s
\n", $auth->auth["uid"]);
printf("Your user name: %s
\n", $auth->auth["uname"]);
printf("You permissions: %s
\n", $auth->auth["perm"]);

page_close()

All pages using PHPLib’s authentication follow this general structure. First, a
page_open () is called; the rest of the script will be executed only after the user is
logged in and authenticated. You can safely assume that no user will ever see anything
from below the page_open() without being logged in. With a one-line page_open()
call, you have added complete user authentication to your script. After you have
established the classes you want to use in the application, the PHPLIb is indeed that
easy to use. Our examples so far have used the example classes provided in the
PHPLib distribution. In your work, however, you’ll want to create your own classes
(derived from the base classes) to better fit your needs. For this, it’s necessary to
understand a bit more about how the PHPLib works internally.

Authentication

Auth Internals

Assuming that you use MySQL as your database engine, the following schema will be
used for your user table:

CREATE TABLE auth_user (
user_id varchar(32) NOT NULL,
username varchar(32) NOT NULL,
password varchar(32) NOT NULL,
perms varchar(255),
PRIMARY KEY (user_id),
UNIQUE k_username (username)

)3
The primary key is user_id, because internally PHPLib works with this ID, not with a
user’s username/password pair. This ID (called uid by PHPLib) is a unique string,
similar to a session ID, that’s created with a combination of uniqid() and md5():

$uid = md5(uniqid($hash_secret));

‘Why doesn’t the PHPLIib simply use a composite primary key involving the fields
username and password? This way, it could save the additional user_id field. The
reason is that PHPLib’s goal is to work with any authentication process and to make
interfacing as easy as possible. Having a separate, fixed-length unique identifier for each
user makes it easy to have additional tables that are tied in a relational model to the
auth_user table.

The trick in our last example was that we simply used the default implementation
of the Auth class, as provided by the PHPLib distribution in Example_Default_Auth.
You'll almost always need to write your own class, extending the Auth base class. In its
core form, the Auth is unusable because it doesn’t provide two functions necessary for
the authentication. Auth knows neither how you want your login screen to look, nor
how you want to handle the authentication. It therefore makes no attempt to do this
for you, and you have to define these functions yourself in your derived classes. Listing
6.5 shows an example of such a derived class, which is similar to those found in
local.inc as example implementation.

Listing 6.5 Extending the base Auth class.
require("EasyTemplate.inc.php3");

class My_Auth extends Auth

{

var $classname = "My _Auth";
var $database_class = "DB_Example";
var $database_table = "auth_user";

function auth_loginform()

{
/| Create template instance
$tpl = new EasyTemplate("loginform.inc.html");

continues

215

216 Chapter 6 Database Access with PHP

Listing 6.5 Continued

}

/] Is the username already set? If yes, it means that the
/| first authentication try failed.
if (isset($this->auth["uname"]))

{
$tpl->assign("USERNAME", $this->auth["uname"]);
$tpl->assign("MESSAGE", "Either your username or your password are
=invalid.
 Please try again!");

}

else

{
$tpl->assign("USERNAME", "");
$tpl->assign("MESSAGE", "Please identify yourself with a username and
=a password:");

}

/] Assign action to form, which points to ourselves
$tpl->assign("ACTION", $this->url());

// Output the parsed template
$tpl->easy print();

function auth_validatelogin()

{

// Global form variables
global $username, $password;

/] If $username is set, remember it
if (isset($username))
{

$this->auth["uname"] = $username;

}

// Set the $uid to false by default
$uid = false;

/] Select rows corresponding to the submitted username/password
$Squery ="
SELECT
*
FROM
$this->database_table
WHERE
username = '$username’
AND password = '$password’

[
3

/| Execute query
$this->db->query($query);

// If one row was returned, the user is authenticated

Authentication

if ($this->db->num_rows() == 1)

{
$this->db->next_record();
// Set up $uid and $this->auth array.
$uid = $this->db->Record["user_id"];
$this->auth["uid"] = $uid;
$this->auth["uname"] = $this->db->Record["username"];
}
return($uid);

The two class variables $database_class and $database_table are used internally by
Auth to save session and authentication information. They don’t influence authen-
tication; the login procedure is handled by the two class methods that you need to
define: auth_loginform() and auth_validatelogin().

When a user requests a protected page and is not yet logged in, the Auth class
invokes the auth_loginform() function. This function should draw a login screen; as
this function will be called again if the authentication fails, it should provide the
necessary mechanisms to handle failed tries. In our example, we display an error
message accordingly, and prepopulate the username form field with the submitted
value.

The second function, auth_validatelogin(), is the heart of the class—it performs
the authentication. It will be called after the user has submitted the authentication
information from the form provided by the auth_loginform() function.The form
variables are then global variables, of course, and need to be made global in the
function before they can be accessed. How you perform the authentication is
completely up to you; in the example, we authenticate against the standard auth_user
table from the PHPLib distribution, but you could also use .htaccess-style files, an
LDAP server, etc.

If the authentication is successful, the function must return a valid user ID and set
up the $this->auth array. This associative array must contain at least two elements:
uid is the unique user ID, uname is the username as entered by the user.

If you want to use permission levels with the Perm class (more on this a bit later),
you need to set up an additional element: $this->auth["perm"].This element should
contain the permissions the user has, as a comma-separated list of names with no
spaces; for example, admin or author,editor. Usually this list will be retrieved from
the same storage medium from which you get the user information—in our example,
the MySQL database.

217

218 Chapter 6 Database Access with PHP

If the authentication fails, the function must return false; then the auth_loginform()
function will be called again. Did you notice that we set up $this->auth["uname"]
regardless of whether the authentication succeeded? The $this->auth array is a session
variable, and thus persistent across multiple login tries. In the auth_loginform()
function, we check whether the username has already been specified once, and
eventually prepopulate the login form with it.

Now that the user is properly logged into your application, you know exactly who
you're dealing with. To manage different permission levels associated with users, you
can use another PHPLib class, Perm.

Managing Permission Levels

In a typical application, you’ll generally have two permission levels: users and
administrators. However, some applications require more sophisticated access control.
A content-management system, for example, needs many permission levels:

= A superuser, able to change anything in the system, to modify the user
system, etc.

= Editors, who can edit articles and content, and approve content submitted by
authors.

= Authors, who can create content, submit it for approval to editors, but not
approve content.

= Users with read-only access.

Since you know the currently logged-in user and can identify him or her with a
unique string ($uid), it wouldn’t be very hard to write functions to associate the user
with a group and present content according to this group. The PHPLib has built-in
functionality for handling this.

To use the Perm class, you have to add another element to the page_open() call.
The PHPLIib provides a default implementation of the Perm class, named
Example_Perm, but here the same principle applies that we mentioned earlier: To make
use of all available functionality and fit your specific requirements, you should derive
your own class in local.inc.

Listing 6.6 shows an example using Perm. It has a bit more functionality than
absolutely necessary, because it allows you to log out and log back in with a difterent
username—this makes it easier to see the different permissions levels in use. The
sample user provided by the PHPLib (username kris, password test) has admin
privileges; the script will show you a “Welcome Admin” message when you log in
with this user. As there is only this one user provided in the PHPLib distribution, you
need to create a new user if you want to see what the page looks like for users with
privileges below admin.

Authentication

Listing 6.6 Using the Perm class.

page_open(array("sess" => "Example_Session", "auth" => "Example_ Auth",
="perm" => "Example_Perm"));

if(isset($mode) && $mode == "reload")
{
$auth->unauth();
print("You have been logged out.
");
printf('If you want, you can login again.',
=$sess->url(basename ($PHP_SELF)));

}
else
{
if ($perm->have_perm("admin"))
{
print("Welcome Admin.
");
print('You are logged in with "admin" permissions.
');
}
else
{
printf('You are logged in with "%s" permissions.
"',
=$auth->auth["perm"]);
}
printf("Your user name: %s
", $auth->auth["uname"]);
printf('Log out',
=$sess->url(basename ($PHP_SELF)."?mode=reload"));
}

page_close();

Bit Bashing

Bitwise calculations often cause a great deal of confusion among novice programmers,
and even advanced developers have occasional difficulties dealing with them.
Representing flag values as bit patterns can be very useful, though; the PHPLib uses
this for permission levels. It’s also used often to store flag values in a single INT field of
a database. Consider an application that needs to keep track of a number of different
states, for example users’ hobbies. Instead of having one field in a database for each
hobby and setting that to true or false, you can have a single flag field. Depending
on whether the user has a specific hobby, this hobby’s bit is switched on or off.

Simply put, bitwise operations are operations that manipulate one or more bits at a
time. You know that in the binary system, you have octets of bits— a series of 0 and 1.
The decimal number 42 in the binary system is represented as 00101010:

Bit position: 7

0

6543210
Bit value: 0101010

219

220 Chapter 6 Database Access with PHP

The bit farthest to the right, Bit 0, is known as the Least Significant Bit. Bit 7 is called
the Most Significant Bit. To convert from binary system to decimal system and vice
versa, you can use BinDec() and DecBin() in PHP.

Binary operators toggle bits in these octets off or on.

Setting a Bit

To set a bit in a value, you use inclusive OR (value | value). For example, if the
flag’s current value is 3 (meaning that the first and second bits are set), and you want
to set the second bit (remember, bit counting starts from 0), you OR the current value
with 4 (2 to the second power):

Toggling a Bit

Toggling a bit—switching it to 1 if it’s 0 and vice versa—is done using the exclusive
OR (XOR) operator (value ~ value).If our value is 3 and we want to toggle the
first bit (which is currently 1: 0000010), the following line would be used:

$value = 3;
$value "= 2;

The result of this would be 1. In binary:

0000010
"0000010
=0000001

Clearing a Bit

Clearing a bit is done most easily by making sure that the bit is switched on, and then
inversing it. This requires two bitwise operators, INVERSE and AND (value &
~value). To clear the first bit in the value 3, this line can be used:

$value = 3;
$value &= ~2;

Authentication

Testing for a Bit

To test whether a bit is set in a value, you use the logical AND operator. It compares
two values; if both bits are 1, it returns 1. For example, to test whether the first bit is
set in the value 3, you would use this:

if(2 & 3)
/] more code

Bitwise Shifts

To shift bits left or right, you use the shift operators << and >>. For example, shifting
binary 1 left with binary 1 will result in binary 10:

<<

—_ A
S o —

[SEES IS
(SIS
(SIS
[SECSINS]
[SECSINS]

This can be useful to set bits, as you'll see later in the example.

Operator Precedence

This is a good point to talk about precedence with bitwise operations. Keep in mind
that bitwise operators have lower precedence than arithmetic operators. The statement
1 + 2 | 3 will be evaluated as (1+2) | 3.It%s also important to remember that
bitwise operators have lower precedence than comparison operators. Be careful not to
write statements like if(2 & 3 != 0). Instead of testing whether the second bit is set
in the value 3 (it is), this statement will test 3 !=0 first, returning true, which will
result in 2 & 1—returning 0, which definitely isn’t what you wanted.

Example

Let’s get back to the hobbies example we mentioned earlier. Assume that the user can
choose from four available hobbies: reading, programming, writing, and hiking. We first
assign a bit to each hobby:

= reading: 1
= programming: 2

= writing: 4

= hiking: 8
In binary, this represents the following values:
reading: 0000001
programming: 0 0 0 0 0 1 @
writing: 0000100
hiking: 0001000

221

222 Chapter 6 Database Access with PHP

In code, you can define the hobbies with a simple bit shift:

define("HOBBY READING", 1 << 0);

define ("HOBBY PROGRAMMING", 1 << 1);

define("HOBBY WRITING", 1 << 2);

define("HOBBY HIKING", 1 << 3);
If the user chooses writing and programming as hobbies, you can create a bit pattern
by ORing these values:

$pattern = HOBBY_WRITING | HOBBY_PROGRAMMING;

Later, you can test whether the user has chosen writing as his or her hobby by
checking the associated bit in the pattern:

printf("Writing %s chosen.", (HOBBY_WRITING & $pattern) ? "is": "is not");

To unset the writing bit, you can use this line:

$pattern &= ~HOBBY WRITING;

The actual check for the needed permission level is done using the
$auth->have_perm() function.You pass the permission level you want to check
for as argument; our example uses $auth->have_perm("admin") to see whether the
user has the privilege admin. If the user has the needed permissions, the function
returns true; otherwise it returns false.

Each user has associated privileges. Using the Example_Auth implementation, the
privileges are stored in the auth_user MySQL table. You've seen the field earlier:

perms varchar(255)

A list of valid permissions is defined in the class derived from Perm, namely in the
$permissions class variable. The Example_Perm class has the following permissions:

var $permissions = array(
"user" => 1,
"author" => 2,
"editor" => 4,
"supervisor" => 8,
"admin" => 16

)3
Permissions are translated to bitmaps internally, and calculated with logical OR and
AND. The values in this associative array define a bit pattern for each permission level.
‘While this may sound a bit complicated, using bit patterns has some advantages for
scenarios like permission levels. For example, it provides for levels that inherit the
permissions from lower levels—an admin level automatically has user privileges, if you
design the bit patterns appropriately.

Authentication

The default setup doesn’t have this inclusive behavior: The admin level is different
from the user level, and a user belonging to the admin group won'’t be able to access
functionality secured with $auth->have_perm("user").To make this clearer, it helps to
visualize how the PHPLib calculates the bit patterns:

= Functionality accessible only to user levels. This level has the bit pattern 1.
= The user is in the admin level, which has the bit pattern 16.

= These two operands are combined with a logical AND, which results in 0
(verify yourself: print(16 & 1);).The result @ is not the same as the requested
level (1), so access is denied.

The essence of this calculation is that the PHPLib tests whether the bit pattern
provided as argument to $perm->have_perms () has the user’s permission bit set. This
allows complex combinations.

Let’s have a look at another example: Suppose you have four permission levels—
admin, editor_in_chief, editor, and author.You want the editors not to be able to
submit content (author level), but the other groups should inherit the permissions
below them. The final authorization system looks like this:

= admin: inherits editor_in_chief, editor, author
= editor_in_chief:inherits editor, author
= editor

= author

To calculate the bit patterns for each group, you start at the lowest level, author, with a
bit pattern of 1 (meaning that the rightmost bit is set). If we wanted the editor to
inherit the author level, we'd go on with the author bit pattern and set the next
higher bit (1 | 2). For this example, however, we want the author and editor groups
to be separate, so we set the editor level to the next higher free bit pattern, decimal 2
(binary 10).

If an editor now requests a page protected with author permissions, access will

be denied:

= required level (author): 1

= current level (editor): 2

= logical AND of 1 and 2 (1 & 2) is 0, which is not the required level.
The next higher level (third bit by now) is editor_in_chief, inheriting editor and
author. This means that bits 1 and 2 must be set in the editor-in-chief’s bit pattern,

and we also set the second bit (2 to the second power, or 4): 1 | 2 | 4— this results
in 7.

223

224 Chapter 6 Database Access with PHP

To verify the correctness of this:

= required level (editor): 2

= current level (editor_in_chief): 7

= logical AND of 7 and 2 (7 & 2) is 2, which is the required level.
The only level left is the administrator’s, which again inherits all levels below it: 7 | 8
(8 is used to set the third bit). This results in 15.To test it:

= required level (editor_in_chief): 7

= current level (admin): 15

= logical AND of 15 and 7 (15 & 7) is 7, which is the required level.

Our permissions therefore are defined as follows:

define("PHPLIB_PERM_AUTHOR", 11 0);
define("PHPLIB_PERM_EDITOR", 10 1);
define("PHPLIB_PERM_EDITOR_IN_CHIEF", 1 | 2 | 4);
define("PHPLIB_PERM_ADMIN", 11214 8);
var $permissions = array(
"author" => PHPLIB_PERM_AUTHOR,
"editor" => PHPLIB_PERM_EDITOR,
"editor_in_chief" => PHPLIB_PERM_EDITOR_IN_CHIEF,
"admin" => PHPLIB_PERM_ADMIN

);

Summary

You've learned about the basic classes and uses of the PHPLib in this chapter. You've
seen that it’s a powerful solution for many problems you’ll inevitably face when
creating Web applications—ryet it’s easy to use once the necessary framework has been
established. It provides a complete infrastructure for session management and user
authentication in all aspects.

In the next chapter, you’ll see the PHPLIib in use with a real-life application. That
chapter also shows another class of the PHPLib that we haven’t mentioned yet: the
Template class for separating code from layout.

Cutting-Edge Applications

If you realize that all things change,

there is nothing you will try to hold on to.
If you aren’t afraid of dying,

there is nothing you can’t achieve.

I N THIS CHAPTER, WE'RE GOING TO DELVE FURTHER into modern Web application
topics.

In the first section, “Knowledge Repositories,” we create a tip repository featuring
user ratings, hit counter, and unlimited nested categories. You’ll learn about tree
structures and put into practice the knowledge gained in Chapter 2, “Advanced
Syntax.”

XML (Extensible Markup Language) is rapidly becoming the most widely used
standard for data exchange. Nonetheless, often generalized explanations (“XML is
HTML allowing you to create your own tags”) make it hard to understand the real
concepts behind it. We try to explain it in detail and give you thorough introduction
into XML parsing with Expat, the Document Object Model interface (DOM), and
LibXML.

WDDX (Web Distributed Data eXchange) provides a means to exchange
programming language structures (objects, classes, arrays, and so on) across the
Internet. We'll show why this is useful and how to use it in your own applications.

226 Chapter 7 Cutting-Edge Applications

Knowledge Repositories

In the corporate environment, a clear trend emerged during the last few years: away
from product-based planning and toward customer-focused strategy. With this trend, a
new technology gained widespread publicity and success: knowledge management.

For a company that wants to have a strategic advantage over its competitors, it’s
necessary to organize corporate knowledge in a way that makes it easily accessible by
anyone, all the time. With the dawn of enterprise intranets, this topic was made more
current than ever.

In traditional intranets, information is often hard to find because it’s spread to many
different pages and coming from many different sources. The information that’s
actually there is often quite useless because it’s not indexed and not broken down into
smaller logical units, making it hard to search.

‘What can a company do to solve these problems efficiently? The key lies in proper
knowledge management. A lot of companies ofter sophisticated solutions, but you may
also consider developing your own tools—simpler and therefore easier to use than
commercial solutions, or better fitting your company’s strategy.

We have a starting point for you. On the CD-ROM to this book, you’ll find the
full source code for a knowledge database, which could easily be transformed into a
support repository or a corporate link directory. The system was originally developed
for Zend Technologies, but they have been kind enough to let us distribute it with
our book.

The application has a wide range of features: full-text search, an unlimited number
of categories and subcategories, a report showing all tips by a specific author and
authors with the most submissions, user rating of entries, user submission entries,
and more.

The system was realized using the PHPLib for database abstraction and HTML
templates. Therefore, the following walkthrough will also give you a thorough
overview of application development with the PHPLib. Figure 7.1 shows the
application’s start screen.

P Tips - Netscape
iew Go Commuricator Hefp

Knowledge Repositories 227

|)7 Whats Relaied I

Bookmarks . L

PHP Tips

- Apache Specific

+ Aspell

+ COM

« HTTP Related
IMAP

+ Abitrary Precision Mathematics

+ Calendar

+ Database

+ Image (GD)

o IMSP

+ LDAP

+ merypt

+ Miscellaneous
PDF

+ MCal
+ mhash

+ Netwark

+ PHP 4 Specific

+ PHP Ogtions & Informations

* Program Execution

+ Semaphore and Shared Memory
- Zlb

+ PHP Core Language
+ POSIX

+ Regular Expression
- xuL

Short conditional statements
Tobiag Gl

0 views, avy. rating: -

Miscellaneaus

XOR with PHP3
Tobias Ratschiller =1

PHP Cora Language > Mathematical Operations
0 views, avg. rating: -

Stiing-Handling
Tobias Ratschiller &2

PHP Core Language » Strings:
0 views, avg. rating: -

C-constants
Tobias R, B

0 views, avy. rating: -

Miscellaneous

Return multiple variables
Boaz Yahav =

0 views, avy. rating: -

Miscellaneaus ‘

[Document Done

i NP Fal 2

Figure 7.1

Requirement List

The knowledge repository’s start screen.

As discussed in Chapter 3, “Application Design: A Real-Life Example,” a project starts
with compiling the requirements. Usually this is an iterative process in close

collaboration with the customer, and is often handled by a systems analyst, project

manager, or consultant, often also by programmers. Analyzing the problem domain and

writing a requirement list is one of the most important phases in software develop-

ment, which will in substantial part determine the success of the project. This project

was started with a requirement list provided by Zend Technologies.

A software system should be developed to organize PHP facts, tips, and hints, in an

easily browseable and searchable manner. The first page of the application should show

the available categories below the root category and a list of newly added entries to

the database. By clicking on one of the categories, the user can browse the entries

below this category. By clicking on an entry, the user gets to a page showing the
details of an entry: the title of the entry, the full text, the author’s name, the date the
entry was added, and the current rating. This page should also make it possible to rate

the entry, in a classification from one to five, one being the highest rate.
The software should have a full-text search feature, using AND as default
concatenation operator: If the user enters “imap connect” the system should return all

entries in the database having “imap” and “connect” in their title or body. Search

should not be case sensitive.

228 Chapter 7 Cutting-Edge Applications

It should be possible to retrieve all entries submitted by a certain author. Three
additional reports should be available, showing the authors with the most entries in
the database, the entries with the highest ratings, and the entries accessed most often.

Only registered users should be able to submit new entries. Submitted entries
shouldn’t be visible, but should be inserted into the database with a flag indicating that
they need to be approved. The administrator should be notified when a new entry is
submitted.

On the Zend.com site, the PHPLIib is already in use. The system should therefore
use the PHPLID for session management, database access, and templates. PHPLib’s
Template class should be used to separate code from layout. The system should expose
a clean API, as it would be maintained later by different developers at Zend
Technologies.

It’s not typical that such a detailed requirement list is provided by the customer.
Often, customers won’t know how business problems may translate into software
applications. The customer is not an expert in software development, but he or she
knows about the problem domain. During the first discussions with the customer, the
analyst usually compiles a requirement list from the problem domain—“What is the
application for?” and “What should the application do for the user?” are typical questions
in this stage. It’s then the analyst’s task to help the customer to express the problem in
terms appropriate to software solutions. During the analysis phase, the analyst learns
more about the problem and can put it into concrete and documentable terms.

Specification

The requirement list gives you a general understanding of the problem. Once you
have that, it’s time to create guidelines for the actual implementation: Write a
specification. The first step for this is to explore the data structures needed.

Try to break up the complex problem into smaller structures. By analyzing the
requirement list and the problem domain, it becomes clear that there are three
important data structures—the rest of the application is built on them.The most
important structure is an entry in the knowledge repository. What forms an entry?
From the requirement list, we know that an entry has associated properties: a title, the
body, author, category, ratings, and logs. Because we have solved similar problems
before, we see a design pattern in this data structure: It’s a simple container. But we
know that we’ll need a way to reference this container. (Drawing from past experience
is very important and can distinguish a really good from a mediocre programmer. The
toughest problem is easy to solve if you have already solved it earlier.)

Creating the data structure for the category follows a similar procedure, but initially
all we know about it is that the structure should have an associated “name” property.
The requirement list says that we need nested categories, so this structure needs a
unique identifier as well (two categories in different branches could have the same
name). Unlimited nesting of categories is also a requirement, but we’ll skip this for the
moment because it’s a separate problem.

Knowledge Repositories

The third data structure is already predefined, as we use the PHPLib. It simply maps
to PHPLib’s Auth class.

This approach is difterent from traditional top-down engineering and functional
decomposition. Functional decomposition identifies the functions of a system being built
(in our example, “organize facts in categories,” “provide reports for most accessed
entries,” etc.) and breaks them into smaller subfunctions until the functions are atomic
and can be mapped directly to program functions. At this time, we make no attempt
at doing this, as we have no idea how to define subfunctions as yet. Functional
decomposition sounds great—until you try it. It can lead you in a totally wrong
direction, and once you're on the way it’s practically impossible to correct decisions
because you can only divide the function again and again—you’d have to start over
completely.

Instead, we try to break the whole problem into design patterns: We try to
recognize problems that we have already solved once. Already knowing the solution to
a similar problem is the best method for problem solving. For example, we don’t need
to do any sort of functional decomposition on the authentication problem—we know
that we can simply use parts of the PHPLIib for this.

The entry and category structures can already be mapped to code. Our application
keeps the entry and category structures in classes:

class category

{
var $cat_id, $cat_name, $parent_id;
}
class entry extends category
{
var $entry id, $title, $body, $t_stamp, $author, $views, $votes, $rating;
}

To use classes was a design decision, and not implied by the requirement list—our
previous experience shows that using classes leads to cleaner code because you can
have multiple separate instances.

You can see these data structures as different “domains” of the software. They form
logical units but interact with each other. The goal of the specification document is to
cover all domains in an application. How the domains are represented in code is not
important at this point and serves purely for illustrating the structures.

Translating these data structures to a relational model is rather simple. The
application uses database tables to store entries in the knowledge repository: available
categories, entry ratings, and access logs. The two main tables are entries and
categories, with links to the sub-tables ratings and logs. Of course, because MySQL
doesn’t know foreign keys, these ties need to be handled in application space—for
example, if the administrator wants to delete an entry, he also needs to delete the
corresponding entries (referenced by the same entry_id) in the tables ratings and
logs. Figure 7.2 shows an entity relationship diagram for the table structure.

229

230 Chapter 7 Cutting-Edge Applications

ratings
Sentry_id
entries rating
Zaentry_id votes
cat_id
t_stamp lo gs
author Zrentry_id

fitle:
body
shatuz

Wi

categories
cat_id
niame
parent_id

Figure 7.2 Entity relationship diagram (ERD) for the knowledge repository application.

Now that you know the application’s basic data structures, the next question is what

happens with them. From the requirement list, we know a series of actions that the

application should allow. It’s now our task to cleanly separate these tasks.

Usually, actions are grouped around the data structures defined earlier. Let’s first

focus on actions dealing with entries in the database:

Retrieve a specific entry. This action needs to know the identifier of the entry to
be retrieved. The action can fail if there’s no entry matching the identifier in the
database. It can also fail if system failures occur; for example, if the database system
is inaccessible. In case of success, the action returns a structure for an entry.

Retrieve entries in a specific category. This actions needs to know the name of
the category for which entries should be retrieved. It can fail in case of an error,
or return a list of valid entries. A list of entries? Wait, we have no such data
structure defined yet. Time to return to the specification and add a new
structure for lists.

Retrieve the ten most-recently-added entries.
Retrieve top-rated entries.
Retrieve the most-accessed entries.

Retrieve all entries submitted from a certain author.

And so forth, for all outlined actions and domains. This will result in a comprehensive

list of needed structures and actions, documenting the whole project.

Knowledge Repositories

To summarize: We've created a requirement list, describing the problem domain and
the features the application should have. Putting the requirement list into more
concrete terms resulted in a specification. The specification describes data structures
and behavior of the application.

After that, it’s time to look at details of the application’s implementation. We pick
two interesting points here, namely the use of templates and the implementation of
nested categories in SQL.

The Template Class

As shown in Chapter 6, “Database Access with PHP,” the PHPLIib offers a solution for
many problems common to Web application. In our case, the Zend developers already
used the PHPLIib for parts of their site, so we standardized on it for session manage-
ment, database abstractions, and HTML templates.

PHPLib’s Template class allows separation of code and layout, similar to the
EasyTemplate class we developed in Chapter 5, “Basic Web Application Strategies.”
This class has a richer feature set than our class; for example, it can contain blocks,
which mark sections to be replaced more than one time (useful for rows in tables, for
example), and it can open multiple files in one instance and combine them easily. The
drawback is that it’s less intuitive to use than EasyTemplate.

The Template class is completely separate from the rest of the PHPLib, and you can
use it without using any other PHPLib features. In case you’re interested in looking at
the source code for it, you can find it in the file template.inc in the PHPLib
distribution.

Just like EasyTemplate, PHPLib’s template class keeps HTML in separate files, using
placeholders for data that should be substituted dynamically by PHP. “Scalar” place-
holders, which will get replaced by ordinary strings, have the same format as the ones
in EasyTemplate.

The code in Listing 7.1 processes this simple template.

Listing 7.1 Basic example of the Template class.

/| Create a template instance
$tpl = new Template();

// Load file, assign an identifier to it
$tpl->set_file("page" => "basic_template.inc.html");

// Assign contents to the placeholders
$tpl->set_var(array("TITLE" => "This is a Template test",
"CONTENTS" => "Hello World!"));

// Parse into a temporary variable (identifier)
$tpl->parse("out", "page");

// Output the parsed template
$tpl->p("out");

continues

231

232 Chapter 7 Cutting-Edge Applications

Listing 7.1 Continued

<html>
<title>{TITLE}</title>
<body>
{CONTENTS}
</body>
</html>

The first line creates an instance of the Template class. The constructor of the class
takes two optional arguments. The first optional argument specifies a base directory
where your template files reside (the default is the current directory, . /); the second
argument defines how to handle placeholders that aren’t used in your script. This can
be one of keep, comment, or remove, the default value being remove. If set to keep,
placeholders are retained—if our example wouldn't assign a value to the {TITLE}
placeholder, the placeholder would show up as is in the parsed template. Setting the
variable to comment would produce the following output in our example, if the
{TITLE} placeholder weren’t assigned a value:

<html>
<title><!-- Template : Variable TITLE undefined --></title>
<body>
Hello World!
</body>

</html>
Setting the variable to remove (the default) would silently delete unassigned
placeholders from the template.

The next line in the example uses set_file() to assign a template file to the class.
This function takes as first argument a handle under which the template file will be
referenced in later functions. The second argument is the filename; the file will be
searched in the path specified in the constructor (in our example, the current
directory). Alternatively, you can pass an associative array to the set_file() function,
assigning multiple files at once. In that case, the keys of the array are the handles, and
the elements define the actual filenames.

After this, strings are assigned to the template’s placeholders using set_var().
Again, you can pass a single key/value pair to this function, or an associative array for
batch processing. The remaining part of the example invokes the parsing function
parse()) and prints the result (p()).

The example shows the most basic usage of the Template class; it works with only
one template file and replaces each placeholder with one string variable. You could
have used EasyTemplate for this as well, and it would probably have been faster and
more intuitive than the PHPLib approach. However, the Template class shows its full
strength when used in more complex scenarios.

Knowledge Repositories

One of the more advanced features is that the Template class can handle multiple
template files and combine them into one output file. The knowledge repository
application uses this extensively: One page template defines the general look and feel,
the Cascading Style Sheets, and the page header and footer, and many smaller
templates form the contents within the “parent” template. Look at these excerpts from
the application’s main page, index.php:

$tpl->set_file(array(

"page" => "page.inc.html",
"table" => "table.inc.html",
"entry_summary" => "entry_summary.inc.html"

));
/] [rest of code, assignments, etc]

$tpl->parse("CONTENTS", "table", true);

$tpl->parse("CONTENTS", "entries", true);

$tpl->parse("CONTENTS", "page");

$tpl->p("CONTENTS");

The main template is referenced with the identifier page. This is basically an HTML
framework, containing one important placeholder, {CONTENTS}, for the actual contents
of the page. This placeholder will be replaced by another, separate template file,
referenced as table. This works because the Template class allows you to append the
results of a round of parsing to a placeholder. The script first parses the template file
referenced by table and then appends it to the main template.

Looking at another template file of the application, entry_summary.inc.html, you’ll
see another advanced feature of the Template class: blocks. Dynamic blocks are used for
parts of a template that will be replaced iteratively with itself. In our case, this is used
to display the last five entries in the knowledge base. The entry_summary.inc.html
template contains a block, which gets repeated to produce five entry summaries. A
block is defined in the template using a comment syntax:

<!-- BEGIN blockname -->

block

<!-- END blockname -->
In code, the block is accessed using the set_block() function. The first argument to
this function is the parent reference, usually a reference to the template file. The
second argument is the block’s name. The optional third argument is the name of a
new reference; if omitted, it’s assumed to be same as the block’s name. For our
example, the set_block() call would look like this:

set_block("table", "blockname");

233

234 Chapter 7 Cutting-Edge Applications

The resulting reference (blockname) can then be handled like references produced
with set_file(), and parsed regularly. Admittedly, this is confusing when you first hear
it. Let’s see how the Template class works conceptually. An important logical unit of
the Template class is handles. Handles are similar to link identifiers (resource IDs): they
point to a certain dataset and can be used in various functions as reference to this
dataset. You can create handles using one of three methods:

= set_file() creates a handle for a template file
= set_var() creates a handle for a placeholder inside a template

= set_block() creates a handle for a block inside a template

With each of these functions, you can specify the handle that should be created. In
set_file() and set_var(), the handle to create is the first argument (or the keys of
the array, if an associative array is passed as argument). In set_block(), the handle

is the second argument. In functions like parse(), subst(), or get_undefined(), you
use the previously created handles to reference the dataset the functions should
process. For the functions, it doesn’t matter how the handle was created—they work
on whole template files as well as on placeholders or dynamic blocks. Let’s look at a
simpler example again. Say you've got one template file with one placeholder and one
dynamic block:

{PLACEHOLDER}

<!-- BEGIN block -->

 {BLOCK_PLACEHOLDER}

<!-- END block -->

To parse this, you first define a handle for the whole file using set_file().The
normal placeholder can be treated normally, just as we’ve shown earlier. Then you
define a block handle. This block can now be treated the same way as you would treat
the file handle itself—it’s an equally important, independent division inside the file.
Therefore, you can also combine the two handles as we’ve done earlier with the two
separate files. In code, this would look like the following:

$tpl->set _file("page", "page.inc.html");

/] Assign value to scalar placeholder
$tpl->set_var("PLACEHOLDER", "This is just a test.");

/| Create block handle, named "block"
$tpl->set_block("page", "block");

/| Create three block instances

for($i=0; $i<3; $i++)

{
/| Replace placeholder for this loop iteration
$tpl->set_var("BLOCK_PLACEHOLDER", "Loop #$i");

Knowledge Repositories 235

/| Parse block, append the result to itself
$tpl->parse("block_handle", "block", true);
}

/| Parse and output page

$tpl->parse("page", "page");

$tpl->p("page");
This gives the designer the possibility to define row templates without having to deal
with any PHP code. While this adds flexibility to the designer’s task, there are still
certain scenarios in which you have no other way than to mix code and layout again.
An example for this is our application’s search results page. In the code for this page,
you'll find this section:

$entries = kb_get_entries_by keyword($keywords);

// Any entries found?

if ($entries)

{
$tpl->set _block("tip_summary", "tip", "entries");
kb_entries_to_template($entries, $tpl);

$tpl->set_var(array(
"RESULTS_TITLE" => sprintf(count($entries).
=" %s found:", count($entries) > 1 ? "entries" : "entry"),
"KEYWORDS" => $keywords
));

}

else

{
$tpl->set_var("MESSAGE", '<div align="center"><i>No entries
=found.</i></div>");
$tpl->parse("entries", "tip", true);

}

The code checks whether entries matching the search term have been found in the
database, and displays either a message stating that no entries have been found, or the
listing of found entries. In the listing, the code also formats the message according to
whether more than one entry is shown (“1 entry found” versus “x entries found”).
This is clearly a layout issue, though—the number of found entries doesn’t influence
the application logic at all. Therefore, in an ideal world, the designer would be able to
provide these messages. Maybe the designer would want to format the “No entries
found” message as bold red, and the number of found entries as large and bold. In our
case, the designer would have to kindly ask the programmer to implement it—after
the third change, this becomes pretty frustrating for both designer and programmer.

236 Chapter 7 Cutting-Edge Applications

One approach to solving this problem is to give the template some control back,
and let the designer decide on template logic. Templates would then contain a simple
meta scripting language, looking like this:

{{if ENTRIES_FOUND > 1}}

{{ENTRIES_FOUND}} entries found:

{{/if}}

{{if ENTRIES_FOUND=1}}

One entry found:

{{/if}}
{{if ENTRIES_FOUND=0}}
No entries found for your search!

{{/if}}
Of course, it’s a fine line between separation of code and layout and mixing them
again. Do you prefer layout in the code or code in the layout? It’s a chicken-and-egg
problem. At the time of this writing, first efforts were underway to create a template
API for the standard PHP distribution. The meta script example above is taken from
Andrei Zmievski’s draft for a template language. Andrei (proponent of the template
API and PHP core developer) plans to implement a number of other features; for
example, standard predefined variables #0DD or #EVEN inside dynamic blocks. This
would make it possible to implement the popular color changes in repeated table
rows—which otherwise would need to be handled by the programmer again. Andrei
plans to integrate the template API directly into PHP, which would offer a number of
advantages over current template solutions, like PHPLib’s. First, it would be standard,
and software developers could depend on it. Second, as it would be tightly integrated
into PHP’s core engine, it could be a major performance boost. Parsed templates could
be cached in memory, for example.

Recursion with SQL

Our application allows unlimited nesting of categories. We have chosen the most basic
and most easy-to-implement solution for nesting categories. The categories table is
defined as follows:

CREATE TABLE categories (
cat_id bigint(21) DEFAULT '@' NOT NULL auto_increment,
name varchar(32) NOT NULL,
parent_id bigint(21) DEFAULT '@' NOT NULL,
PRIMARY KEY (cat_id),
KEY parent_id (parent_id)
)3
The field responsible for the nesting is of course parent_id; it contains the cat_id
value of the category one level above. Actually, this is the most basic tree implemen-
tation possible: Each node has exactly one property referencing the parent node. There
are a number of drawbacks with this approach, though, the most important being that

Knowledge Repositories

it’s impossible to get all parent nodes for a node with one SQL query. Instead, to get
the parent, you need to issue multiple SQL queries; to be exact, you need n-1 single
queries for a depth of n levels.

We have chosen a recursive implementation to get the parent nodes in the function
kb_cat_get_parents(). It retrieves category nodes from the database as long as cat_id
matches the root category. This can best be visualized with an example. Let’s assume
there are three nested categories:

INSERT INTO categories VALUES (1, 'Main Category', 0);

INSERT INTO categories VALUES (2, 'Sub Category I', 1);

INSERT INTO categories VALUES (3, 'Sub Category II', 2);

When called with an initial cat_id value of 3, the kb_cat_get_parents() function first
retrieves the parent ID for this node (which is 2 in our example). Then it calls itself
with this ID, forming a recursive function. The terminator of the recursive function is
the condition parent_id == 0—this is the root category, and no nodes can be above
the root category. The function will call itself recursively as long as this condition is
not met.

Authentication

The requirements for the application include that only registered users should be
allowed to submit new entries. Thanks to the PHPLIib, adding authentication to the
system is a matter of adding a page_open() call to the script you want to protect—in
our case, submit.php.This way, the user is only able to access the page contents after
having been authenticated.

In the entries table, we store the unique user ID provided by the PHPLib. As
we’ve shown earlier in this chapter, you can access this ID using the $auth array: It’s
stored in $auth->auth["uid"], and $auth->auth["uname"] contains the username.

Our application doesn’t deal with user management. Somewhere else on your Web
site, you have to provide means to register as user, edit registrations, send forgotten
passwords, etc. Because it’s up to you to implement this, we also have no chance to get
the full name of a user—all we have is a unique user ID and the username. Therefore,
there’s a function called real_user_name (), which takes a user ID as parameter and
should return a full name for this user. By default, the function simply returns the user
ID again; you should extend the function to look up the user’s full name in your
database and return it.

The Finished Product

The real_user_name() function and all other API functions are held in one central
file, 1ib.inc.php3. As all functions have a basic syntax documentation in the source, it’s
easy to compile an API overview automatically. All we need is a simple grep
command:

grep '“[\\\/]**" lib.inc.php

237

238 Chapter 7 Cutting-Edge Applications

This is no replacement for complete technical documentation, however, and should
serve only as a quick reference. After having defined the API, the rest of the
application deals mostly with invoking the API functions and printing the results.

PHP and XML

Note: If you're already familiar with the basic concepts of XML, you can safely skip
the next sections giving a short introduction to XML, and continue directly with PHP
and Expat.

What Is XML?

XML (Extensible Markup Language) is a meta markup language for documents
containing structured information. Let’s try to explain it word by word in plain
English:
» XML is extensible. Take HTML: the tag <h1> always denotes a first-level heading.
In XML, by contrast, the tag means nothing until you give it a meaning with an
accompanying rule, the Document Type Definition (DTD).

s XML is a markup language. Just as HTML should, theoretically, XML does not
provide layout information to the processing application.

» XML is a meta language. XML doesn’t have a fixed tag set—it provides a facility
to define tags.

» XML works with documents. Documents. As in not limited to files] Documents can
come from a database, over the network, or indeed from files.

» XML defines structured information. It arranges single parts of data in a larger body
and gives it a contextual meaning and a structural relationship.

Structured Information

There’s one key concept you’ll need to understand when talking about XML:
structured documents or—more eloquently—structured information markup. Structured
markup explicitly defines the structure and semantic content (the contextual meaning)
of a document. It doesn’t influence the way in which the document will appear to the
reader—the interpretation of the data (parsing, layout, etc.) is completely left to the
processing application. Take the HTML <p> (paragraph) tag: It denotes multiple
sentences belonging together to form a logical unit. The tag per se doesn’t imply how
the paragraph should be rendered in the browser; the browser could insert a blank line
before or after, indent the first line in the paragraph, or add ornamental borders
around it. This is logical markup—the style information is hardcoded into the browser.
XML documents are compounded of such logical markup. As in HTML, tags are used
to identify the markup information. But in XML, there are no visual elements as in

PHP and XML

HTML (think of)—it’s restricted to logical markup. There’s no way to specify a
word as italic in XML.You can only mark it for its semantic meaning, for example
with <emphasis>.

So much for the markup—where’s the structure? XML tags can be nested and have
a contextual state—that is, it’s important where they appear in a document. A tag
combination <chapter><title> is treated differently than <book><title>.There’s no
limitation on the number of nested elements in the XML specification—the only
requirement is that all elements must originate in one root element.

XML’s Relatives

The ancestor of XML is SGML. Since it became an ISO standard in 1986, SGML
(Standard Generalized Markup Language) has been used to maintain structured
documents by large corporations in all industries. However, SGML is a complex
standard that’s difficult to support in applications. Most SGML applications—editors,
storage servers, transformation tools—are therefore quite expensive, often costing well
above $10,000.

HTML, on the other hand, has wide industry support and is used on millions of
‘Web sites. It defines a simple type of document for a common class of short articles,
with headings, paragraphs, lists, illustrations, and some provision for hypertext and
multimedia. But it’s very limited regarding flexibility and extensibility. The tags and
semantics are fixed—you can’t define your own tag for an entry in a Table of
Contents. Neither is it suited for media other than computer interfaces—if you ever
tried to print articles distributed to multiple files, you know what this means. The very
open specification led to a fragmentation with multiple different implementations. As
you know, it’s an art per se to write browser-neutral HTML.

So there was a need to create a new format allowing structured documents to be
used over the Web. XML was designed to overcome the limitations in the only viable
alternatives, SGML and HTML.

The design goals of XML had some clearly defined points:

= It must be easy to use—both for users and for developers implementing XML
parsers. The complexity of SGML is a constraint that needs to be removed.

= XML must be open to support a wide variety of applications and subprotocols.
The dependence on a single, inflexible document type as with HTML needed
to be eliminated.

= [t requires a strict syntax. Optional features lead to compatibility problems when
users want to share documents. There was the constant fear that the same could
happen as happened with HTML—multiple competing and incompatible
implementations.

= It must be compatible with SGML. Members of the development committee
were also involved in SGML efforts and had legacy data contained in SGML
systems.

239

240 Chapter 7 Cutting-Edge Applications

The development resulted in a clear specification approved by the World Wide Web
Consortium (W3C) as the recommendation Extensible Markup Language (XML) 1.0
from February 10, 1998.

XML is different from SGML: XML strips out a large number of SGMLs more
complex and less-used features and creates a new reduced SGML-based application.
Because it’s a subset of SGML, you can read an XML document with any SGML-
compliant system. Every valid XML document is a valid SGML element.

XML is different from HTML: Apart from removing HTML misconceptions, it has
important syntactical differences. Plus, XML is fully Unicode-ready; tags, attributes and
contents can be in any string encoding defined by Unicode.

Let’s look at a short excerpt from the source code of this book:

<title>Cutting-Edge Applications</title>

<abstract>

<para>

If you realize that all things change,

there is nothing you will try to hold on to.
</para>

</abstract>
Here you see the tags in use, providing for structured and logical markup. In contrast
to HTML,

= Tags are case sensitive.
= Whitespace is significant.

= Opening tags must always have a matching closing tag or be self-closing (for
example, <xref/>).

= Documents can have an arbitrary valid Document Type Definition.

Thus we can happily summarize: XML removes the enormous complexity of SGML,
while still providing all necessary features for structural markup, including the
definition of custom document types.

XMDL’s Advantages

But why XML? With all those formal definitions and fact sheets, developers sometimes
don’t see the usefulness for their daily activities at first. Indeed, why use XML and not
Word or Notes? Or your own proprietary storage format? Or a relational database?

The main argument against proprietary formats is just that: They’re proprietary.
Data that’s designed to be used on a heterogeneous network such as the Internet has
to be usable on all types of computers connected to it. XML is built out of plain text
(as opposed to the binary format of most proprietary applications), making it
supportable by all current computing platforms. Besides, proprietary data formats are
often (for example in public bodies) just not an option: You don’t want to rely on the
mercy of a single vendor who could change the format at will, or even abandon it
altogether. XML is license-free, vendor-neutral, and platform-independent.

PHP and XML

While XML provides means for structured content, it presents a different (but not
necessarily opposing) view on content than relational database systems. XML doesn’t
provide a relational model. It allows unlimited nested levels, which could not be
handled by a database system. On the other hand, it misses features found in an
RDBMS, such as stringent field types, constraints, keys, and so on. Of course, there are
similarities in the two concepts and there is indeed development going on to create a
SQL-like query language for XML documents. Anyway, the success of XML shouldn’t
make you forget the usefulness of the traditional RDBMS; they provide many
important processing features that could hardly be modeled in XML, and they’re
optimized for speed from the ground up.

The overall and killer advantage of XML is the separation of logical structure from
layout. By having your documents in XML, you can transform them into any
representation you want: HTML, PostScript, PDE RTE plain text, audio, Braille—from
one single source. And as XML (plain text) documents can be parsed with your
favorite scripting language, it’s easy to change hyperlinks dynamically, change element
contents, or associate structures with a database.

And if you're still not convinced, review all those Document Type Definitions that
are being developed or are already in use. XML itself is mostly an “under the hood”
technology—the meat is the applications that use XML.

What Is XML Used For?

As a structured information markup language, XML is of course used in content
management systems, archiving solutions, and corporate document repositories. But
plenty of other XML applications and subprotocols exist. Due to the open nature of
the standard, DTDs have been developed at a fast pace.

DocBook

The DocBookX DTD is a very popular set of tags for describing books, articles, and
other prose documents, particularly technical documentation. It was originally
developed in 1991 by the publisher O’Reilly as an SGML DTD for in-house use. It
soon became popular with authors and spread to other publishing houses, a change
embraced by O’Reilly, which handed over further development to the Davenport
Group. In mid-1998, OASIS (Organization for the Advance of Structured Information
Standards) officially took over the maintenance of DocBook. When XML became
increasingly popular, an unofficial XML version (3.1) was created by Norman Walsh;
work is currently underway to transform this to an official release—DocBook 5 will
most probably come in SGML and XML flavors.

When we started writing this book, it was clear that we wanted to use an open
format such as XML.The DocBook DTD was consequently chosen because it offered
all the features we would ever need. All the elements typically used in technical
writing are present and, to tell you the truth, even very esoteric ones are included—or
have you ever seen a MouseButton element (from the quick reference: The conventional
name of a mouse button) in your word processor?

241

242 Chapter 7 Cutting-Edge Applications

XML and DocBook offer some clear advantages to us. We can use CVS as a
version control tool for both the PHP examples and the book files. Transformation to
HTML is easy, either with PHP or using a style sheet processor like James Clark’s XT.
And editing is very comfortable, thanks to SoftQuad’s XMetaL, which allows intuitive
visual editing by using Cascading Style Sheets (CSS) for the display in the authoring
environment, as shown in Figure 7.3.

[xMetal - [Cutting_E dge_y i [_[5]x]
WC Fie Edt View Iwert Tocks Table Window Help _ =] x|
DoE@haY[imasc|a@ly|«= a2
= slEe]

|2l
What Is XML Used For? paia |

id -

As a strutured information markup language, XML is of course used in content management systems, archiving solutions and [j
carporate document repositories. But there exist plenty of other XML applications and sub-pratacols. Due to the open nature of
the standard, DTDs have been developed at a fast pace
DocBook =
The DocBook¥DTD is one of those. DocBook is a very popular set of tags for describing books, articles, and other prose =H]

documents, particularly technical documentation. It was eriginally developed in 1991 by the publisher OReilly as an SGML DTD Used Al
for their in-house use. It becarne soon papular with authors and spread to other publishing houses, a change embraced by — =

ORilly who handed over further development to the Davenport Group. In mid 1596, OASIS (Organization for the Advance of acronym

Structured Information Standards) took over the maintenance of DocBook officially. When XML became increasingly popular, an action
unefficial XML version (3.1) was created by Norman Walsh; work is currently under way to transform this to an offiial release - addiess
DocBook § will most prabably come in SGML and XML flavors ::EEM
\When we started writing this book, it was clear far us that we wanted to use a open format like XML, The DocBook DTD was author =
consequently chosen because it offered all features we would ever need. All the elements typically used in a technical writing are authoiinials
present and, to tell you the truth, even very esoteric anes are there - ar have you ever seen a MouseButton element (from the beginpage
quick-reference: The convertional name of 2 mouse button) in your word processor? S‘;‘Iﬂvkjhu:"‘ﬁ
ML and DocBook offers some clear advantages to us. We can use CVS as version control tool for both the PHP examples and caution
the book files. Transformation to HTML is easy, either with PHP or using a style sheet processor like James Clark's XT. And ciation
editing is very comfortable, thanks to Soflquad's XMetal, which allows intuitive visual editing by using Cascading Style Sheets clerefertry
(CS5) for the display in the authoring emvironment, as shown in Figure ctelile
classname
cmdspnopsis
WML - Wireless Markup Language command
comment

WML is another Document Type Definition which has quickly become an industry standard. s intended for use in specifying conputeroutput

content and User Interfaces for wirsless devices such as mabile phones ar Personal Digital Assistants, These devices have some capouber
common canstraints, which make HTML a bad chaice for a markup language daat
o small and lowresolution graphical displays emphasis
o limited user interaction - eton =l
[ololE @lmankTmanr chanter T sestonTaarm ‘ ;l_l ’;E“"QE @ Inset __ Apply
Eror

K Cutting Fdg. |

Ules Checking On | [NUM |

Figure 7.3 SoftQuad’s XMetaL XML authoring environment, used for writing this book.

WML —Wireless Markup Language

WML is another Document Type Definition that has quickly become an industry
standard. It’s intended for use in specifying content and user interfaces for wireless
devices such as mobile phones or Personal Digital Assistants. These devices have some
common constraints, which make HTML a bad choice for a markup language:

= Small and low-resolution graphical displays
= Limited user interaction
= Narrow-band network access (for now)

= Limited computational resources

PHP and XML 243

WML addresses these issues. It divides content into small pieces (“cards”) and
organizes them in larger information units (“decks”).To avoid continuous network
access, WML defines a set of client-side scripting procedures in XML, for example the
ability to set and access variables on the client computer. Because of limited screen real
estate, creating meaningful navigation paths is especially difficult on portable devices.
WML explicitly requires the user agent—the WAP browser—to have a navigation
history and enables WML documents to make use of it, thus freeing the author from
some of the responsibility and delegating it to the user agent.

RDF—Resource Description Framework

The RDF specification defines a language to store meta information about Web
resources in an XML format. The Web as it is, with its millions of HTML pages, is
very difficult to process by automated machines like spiders or robots. Search engines
are hitting their limit every day, and even the most clever algorithms don’t guarantee
meaningful search results, as anyone using the Web for professional research knows.
‘Web pages can only be full-text searched—which is a very limited searching method.

Current HTML allows primitive storing of meta data about a document. As you
may know, meta tags can be used to denote keywords for a document, a short
summary, and author information. But what if you want to store the publication
history of the document? Information about the editors? Any bibliographer will laugh
at HTML’s meta tags.

In 1998, the W3C formed a committee to research a format for defining meta data
and released the Resource Description Framework (RDF) as a recommendation on
February 22, 1999.

RDF extends the format originally used for PICS, a content rating system, and is
more and more replacing the Dublin Core Metadata for Resource Discovery standard,
another methodology for classifying meta data. RDF has quickly become accepted as a
standard mechanism for the global exchange of meta data on the Internet.

XML Documents

XML documents consist of markup and content (called character data in XML terms)
in the Unicode character set. There are different types of markup, which we’ll
introduce in the following overview.

Elements

Elements will look familiar to anyone who has worked with HTML. They denote the
meaning of a content section. XML cannot contain elements with no closing tag
(HTMULs , for example), but has a distinct notation to identify empty tags:

<xref linkend="end"/>

244 Chapter 7 Cutting-Edge Applications

Keep in mind that the nesting of tags is significant—improperly nested tags will lead
to badly formed documents.

Attributes

Elements can have attributes. Attributes are name/value pairs that occur within the tags
after the element name and specify a property of an element. Attribute values must be
contained in quotes. No attribute name may appear more than once in the same tag.

Any XML document can optionally (and regardless of the Document Type Defini-
tion) have two standard attributes: xml:1lang and xml:space.The xml:lang attribute
was defined because language independence is one of XML’s most important goals.

Without knowing what language a text is written in, it’s impossible for an
application to display, spell-check, or index it. XML’s great Unicode support wouldn’t
be of any help if the author couldn’t assign a language tag to a particular part of a
document. Thus the xml:1lang attribute was introduced:

<p>Worldwide declarations of love</p>

<p xml:lang="It">Ti amo.</p>

<p xml:lang="De">Ich liebe Dich.</p>

<p xml:lang="X-Klingon">gabang</p>

The language identifier is one of the following:
= A two-letter ISO 639 language code

= A language code registered with the Internet Assigned Numbers Authority
(IANA); these begin with the prefix “i-” (or “I-7)

= A user-defined code, prefixed with “x-"" (or “X-")

The other standard attribute, xm1:space, isn’t as straightforward to understand and use.
As mentioned earlier, whitespace is significant in XML—it will be passed to the
processing application. But after having read our Coding Style guidelines, you know
that whitespace is important to structure and indent code to improve readability. This
way it’s used for laying out the markup, but it’s of no importance for the markup itself
or for the character data. On the other hand, an author may well intend whitespace to
be preserved.

Because there are these two conflicting views on the subject, the XML committee
introduced the xml:space attribute that controls the behavior of whitespace. It can
only take two values: preserve or default. On any element that includes the attribute
xml:space="preserve", whitespace is treated as “significant” and passed to the
processing application as is. The default value tells the application that the
application’s default processing should be applied. Both standard attributes are
inherited to sub-elements until they are explicitly reset in an element.

Note: An XML processor is the program used to read XML documents. The XML
processor makes it possible for an application to access the structure and content of an
XML document. Throughout this book, the terms XML processor and XML parser refer
to the same kind of software.

PHP and XML 245

Processing Instructions

Another “element” type you'll find in XML documents is the processing instruction, or
PI. PIs are used to define parts in a document that should not be interpreted by the
regular parser engine but instead by a specialized processing handler. They consist of <?
and a target name used to identify the application to which the instruction is directed.
The long PHP tag (<?php) is of course such a PI and can be used in XML documents
to mark PHP code.

Note: In order to be XML-compliant, you have to set the short_tags directive in
your PHP configuration to 0ff and use the long opening tag <?php consistently. The
short opening tag would confuse XML, as it wouldn’t be a valid processing
instruction. On the other hand, tags like <xm1 would interfere with PHP, as PHP
would think of the xml as code, and produce a parse error accordingly.

Entities

Any text that’s not markup constitutes the character data of the document. Within this
content, an author needs a way to include special characters like < or > that normally
would introduce start or end markup sections. Similarly to HTML, XML knows the
notation of entities. Five entities are predefined:

Entity Character Symbol

< < less than

> > greater than

& & ampersand

" " double quote

' ' single quote (apostrophe)

Note: If you use a Document Type Definition, these entities need to be declared if you
want to use them.

Using character references, you can insert any arbitrary Unicode character into
your document. They consist of the normal notation of references, but with a pound
sign (#) following the ampersand. After that, either a decimal or a hexadecimal
reference to the Unicode position is inserted. For example, both ℞ and ∞
refer to the infinity sign (o). Entities are not limited to a single character, though; they
can be of any length. For example, a DTD could define an entity &footer; to contain
"Copyright (c) 2000 New Riders."

Comments

XML uses the same notation for comments as HTML: <! - -comment - ->. Comments can
contain any data except the literal string - - and can be placed between markup entries
anywhere in your document. The XML specification explicitly states that comments
are not part of a document’s contents—a parser is not required to pass them to the

246 Chapter 7 Cutting-Edge Applications

processing application. This means you can’t use comments for hidden instructions or
the like, as you might be used to doing from HTML (think of using comment tags for
hiding JavaScript from older browsers).

CDATA Sections

One special type of content is CDATA sections. As soon as you try to embed larger
sections of code (containing many occurrences of < or &) into an XML document,
you’ll find the standard method of referencing special characters through entities
awkward. HTML has the <pre> tag to turn off markup interpretation for a section—
but as XML doesn’t know any built-in tags, that’s out of our reach. To overcome this,
you can mark sections in XML as CDATA, using this construct:

<! [CDATA[

print("<a href="script.php3?foo=baré&baz=foobar");
11>

Within a CDATA section, all characters can occur, except for the]]> sequence.

Document Prologue

Note: Although prolog is the spelling in the official specs, our editor prefers the
Americanized (and possibly arcane) spelling prologie. XML documents should (but
don’t have to) begin with an XML declaration that specifies the version of XML
being used. This version information is part of the document prologue:

<?xml version="1.0"?>

<greeting>Hello, world!

</greeting>
By having this information at the top of a document, a processor can decide whether
it can handle the document’s version of XML. Its also useful as a method to identify
the document’s type; just as #!/bin/sh in the head of a file declares it to be a shell
script, the XML declaration identifies an XML document.

The second important part of the document prologue is the document type
declaration. Don’t confuse this with Document Type Definition (DTD)—the document
type declaration contains or points to a DTD! The DTD consists of markup declara-
tions that provide a “grammar” for XML documents. The document type declaration
can point to an external DTD, contain the markup declarations directly, or both. The
DTD for a document consists of both subsets taken together. Here’s an example of a
document type declaration:

<!DOCTYPE book SYSTEM "docbookx.dtd">

This document type declaration has the name book and points to an external DTD
named docbookx.dtd. It has no inline DTD.

PHP and XML

If a document contains the full DTD and no external entities, it’s a called a stand-
alone document and marked as such in the XML declaration:

<?xml version="1.0" standalone='yes'?>

This can be useful for some applications; for example, for delivery of documents over a
network, when you want to open only a single document stream. Note that even
XML documents with external DTDs can be converted to stand-alone documents by
importing the DTD and external entities into the document prologue.

Document Structure

Now you know all the pieces that form an XML document: elements (with
attributes), processing instructions, entities, comments, and CDATA sections. But how
are these pieces grouped together to form a meaningful XML document?

The XML specification only defines a very generic document structure. It says that
each well-formed document has these qualities (more about what “well-formed”
means later):

= May have a document prologue identifying the XML version and DTD.

= Must have exactly one root element and an arbitrary number of elements below
the root.

= May have miscellaneous stuft after that.

The last part, “miscellaneous stuft,” is referenced in a wry tone here—it’s considered
by many people to be a design error of XML. It makes parsing XML documents
potentially much harder, because you can’t rely on the document end being the
closing root element. When parsing a document over a network connection, for
example, you can’t close the connection after having received the closing root
element—you must wait until the server closes the connection on its own, as there
may still be more “miscellaneous” content to consider.

But nothing was said yet about the syntax and structure of the thing that
supposedly is responsible for the whole magic of XML: the Document Type
Definition. Indeed, it’s the DTD that gives meaning to an XML document; it defines
its syntax, the sequence and nesting of tags, possible element attributes, entities—in
short, the whole grammar. Writing complex DTDs is no easy task and whole books
have been written to cover the subject. Because as an XML user you usually don’t
need to deal with this task directly, we won'’t cover this topic here. Instead, we'd like to
look at another XML concept that may be more important in your daily work.

XML Namespaces

You've seen some different XML applications (Document Type Definitions) and what
they’re used for. But what if you want to create a single XML document containing
elements from two different DTDs? For example, the <part> element could mean a
book part in one DTD and a manufacturing part in another. Without a way to

247

248 Chapter 7 Cutting-Edge Applications

separate these two namespaces, the two element names would clash. How could these
distinct elements be identified? You need to associate an identifier with the element,
for example <part namespace = "book"> or, if you want to avoid attributes,
<book:part> and <manufacturing:part>.

The W3C learned early about this shortcoming in XML and introduced a new
specification: Namespaces in XML, published as a Recommendation on January 14,
1999.

XML namespaces provide a method for having multiple namespaces, identified by
Uniform Resource Identifiers (URI), in one XML document. The Resource
Description Framework DTD uses this method. Look at the following example from
the RDF specification:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://description.org/schema/">
<rdf:Description about="http://www.w3.org/Home/Lassila">
<s:Creator>Ora Lassila</s:Creator>
</rdf:Description>

</rdf:RDF>
This defines two namespaces, one named rdf and one named s. After the definition, a
namespace is referenced by prefixing it (concatenated with a colon) to an element
name, thus effectively avoiding the collision of different logical meanings and
syntactical definitions.

Note: The URI in a namespace identifier is not a DTD. It would of course be nice
to be able to point to different DTDs using XML namespaces, but there are currently
many technical problems with this approach—this is being addressed by the W3C in
the XML Schema definition, which is under development at the time of this writing.

EBNF—Or “What the Heck Is That Again?”

As a Web developer, you'll frequently be faced with the task of reading specifications—whether project
specs, formal language definitions, or standards whitepapers. When reading some of the specifications
from the W3C (the most well-known are the HTML and XML documents, probably), you'll stumble across
a strange mixture of characters that presumably form a grammar definition.

document ::= prolog element Misc*
This is the very first syntax definition in the XML specification and defines the basic structure of an XML
document. The notation used is called Extended Backus-Naur Form, or EBNF for short. Understanding the
formal specifications will get a lot easier once you understand the basics of EBNF.

EBNF is a formal way to define the syntax of a programming language so that there's no ambiguity left
as to what's valid or allowed. It's also used in many other standards, such as protocol or data formats
and markup languages like XML and SGML. As EBNF makes for a very rigorous grammar definition, there
are software tools available that automatically transform a set of EBNF rules into a parser. Programs that
do this are called compiler compilers. The most famous of these is YACC (Yet Another Compiler Compiler),
but there are of course many more.

PHP and XML

You can see EBNF as a set of rules, called productions or production rules. Every rule describes a part of
the overall syntax. You start with one start symbol (called S, by tradition) and then you define rules for
what you can replace this symbol with. Gradually, this will form a complex language grammar composed
by the set of strings you can produce when following these rules.

If you look at the example from above again, you see that this is an assignment; there's a symbol on the
left, an assignment operator (which can also be written as :=), and a list of values on the right. You play
the game by following the symbol definition down to the last occurrence—then on the right side of the
assignment no symbols are given, but a final string called terminal, which is an atomic value.

EBNF defines three operators, which will look familiar to you from regular expressions:

Operator Meaning
? Optional
+ Must occur one or more times

Must occur zero or more times

To define the grammar of language, which allows you to express floating-point numbers, this EBNF
notation would be used:

S := SIGN? D+ (. D+)?

D :=[0-9]

SIGN := "+";"."
The first line defines the start symbol, with the following sequence:

= An optional sign, consisting either of + or -
= One or more elements of the D production

= Optionally, a dot, and again one or more elements of D production

Notice that EBNF allows operators to work on groups of symbols: (. D+)? means that this expression is
optional.

The second line lists the finals (atoms) for the D production, the digits O to 9 in this case. The syntax
used is the same as with regular expressions; a set is defined in a bracket expression. The third line
defines the two possible signs. The pipe character (}) is used to denote alternatives: A|B means "A or B
but not both."

That's a very basic explanation of EBNF. The XML specification defines additional syntax; for example,
validity constraints and well-formedness constraints—it's explained in the Notation section of the spec,
so we won't go into details here. More information about EBNF can be found in any modern compiler
book.

249

250 Chapter 7 Cutting-Edge Applications

Validity and Well-Formedness

There are two types of compliant XML documents: valid documents and well-formed
documents. Any XML document is well-formed if it matches XML’ basic syntax
guidelines:

= It contains one root element and an arbitrary number of elements below that
element.

= Elements are properly nested.

= Attributes appear only once per element and are enclosed by single or double
quotes. They cannot contain direct or indirect entity references to external
entities. Nor can they contain an opening tag (<).

= Entities must be declared before theyre used, except for the standard entities.

= Entities must not refer to themselves recursively.

For example, the following is a well-formed XML document:

<greeting>Hello world.</greeting>

But it’s not a valid document. The XML specification defines it this way: An XML
document is valid if it has an associated document type declaration and if the document complies
with the constraints expressed in it. This means that any valid XML document is also
well-formed. A well-formed document may be invalid if it doesn’t adhere to the
syntax laid out in the associated DTD. An ill-formed document can never be valid.
An ill-formed document is not an XML document: It contains fatal errors and XML
parsers are instructed to stop processing at this point. The distinction between valid
and well-formed has two very important connotations to XML. First, it brings along
two classes of XML parsers: those that care about validity of an XML document and
those that don’t: that is, validating and non-validating parsers. The XML specification lists
ease of use for developers as a design goal, and indeed it’s quite easy for any medium-
level programmer to write a non-validating parser. Writing a validating parser is a
different matter, through.

Second, the validity versus well-formedness concept divides XML applications into
two categories. One range of applications treats XML as an extended data-storage
format. Well-formed documents are used for data storage and display. For this task, a
DTD is not necessary; a well-formed document is sufficient. You would achieve some
level of code reuse with this approach; for example, you could reuse the code for
parsing data and generating tags in later applications. But as soon as you want to
exchange information as information (as opposed to treating it as pure data), you need
to give the document a meaning and associate it with a DTD. In applications dealing
with information processing and exchange, only valid documents are appropriate.

Now that you’ve learned about the basics of XML and related topics, let’s put the
gained knowledge into practice by looking at Expat, a non-validating parser built
into PHP.

PHP and XML

PHP and Expat

Expat is the parser that is responsible for XML processing in Mozilla, Apache, Perl, and
many other projects. It can be compiled into PHP since version 3.0.6 and is part of
the official Apache distribution since Apache 1.3.9. Since Expat is a non-validating
parser, it’s fast and small—well suited for Web applications.

Event-Based API

There are two types of XML parser APIs: tree-based parsers that usually provide an
interface to the Document Object Model (more about this later) and those that
process XML documents with an event-based approach. Expat makes an event-based
APT available.

Event-based parsers have a data-centric view of XML documents. They parse the
document from top to bottom and report events—such as the start of an element, the
end of an element, starting of character data, etc.—to the application, usually through
callback functions. The “Hello World” example document from earlier in the chapter
would be reported by an event-based parser as a series of these events:

1. Open Element: greeting
2. Open CDATA section, value: Hello World

3. Close Element: greeting

Unlike tree-based parsers, they don't create a structure representation of the
document. This provides for a lower-level access and is much more efficient in terms
of speed and resource usage. There’s no need to hold the entire document in memory;
indeed, documents can be much larger than your system’s memory. Of course, it’s still
completely possible to create a native tree structure if you need to do so. Prior to
parsing a document, event-based parsers generally require you to register callback
functions that will get invoked when a certain event occurs. Expat is no exception. It
defines six possible events plus one default handler:

Target Function Description

elements xml_set_element_handler() Opening and closing of
elements

character data xml_set_character_data_handler() Beginning of character data

external entities xml_set_external_entity_ref_handler() Occurrence of an external
entity

unparsed external ~ xml_set_unparsed_entity_decl_handler Occurrence of an unparsed

entities external entity

processing xml_set_processing_instruction_handler() Occurrence of a processing

instructions instruction

notation xml_set_notation_decl_handler() Occurrence of a notation

declarations declaration

default xml_set_default_handler() All events that have no

assigned handler

251

252 Chapter 7 Cutting-Edge Applications

Let’s start with a really basic example. The source code in Listing 7.2 forms a program
to extract all comments from an XML document (remember, comments have the
form <!-- ... -->).The example registers only one handler that gets called for all
events during the parsing. If you register another handler, for example using

xml_set _character_data_handler (), the default handler would not be invoked for
this specific event—the default handler processes only “free” events with no assigned
handler.

Listing 7.2 Extracting comments from an XML document.

require("xml.php3");

function default_handler($p, $data)

{
global $count; // count of comments found
/| Check if the current contains a comment
if (ereg("!--", $data, $matches))
{
$line = xml_get_current_line_number($p);
// Insert a tab before new lines
$data = str_replace("\n", "\n\t", $data);
// Output line number and comment
print "$line:\t$data\n";
/] Increase count of comments found
$count++;
}
}

/| Process the file passed as first argument to the script
$file = $argv[1];

$count = 0;

/| Create the XML parser
$parser = xml_parser_create();

/| Set the default handler for all events
xml_set_default_handler($parser, "default_handler");

/| Parse file and check the return code
$ret = xml_parse_from_file($parser, $file);
if(!$ret)

{

/] Print error message and die

PHP and XML

die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($parser)),
xml_get_current_line_number($parser)));

}

/| Free the parser instance

xml_parser_free($parser);

The example works in a pretty straightforward way. First, the XML parser instance is
created using xml_parser_create(). In all subsequent functions, you’ll use the parser
identifier you created this way—in a similar fashion to the result-identifier in the
MySQL functions. Then the default handler is registered and the file is parsed.
xml_parse_from_file() is a custom function we provide in a library; this function
simply opens the file specified as the argument and parses it in blocks of 4KB. PHP’s
original XML functions xml_parse() and xml_parse_into_struct() operate on
strings—Dby using wrappers for opening, reading, and closing a file and passing its
contents to the respective functions, you can save time and code.

The default handler checks whether the current data section is a comment and
outputs it if this is the case. Along with each comment, the current line number
(returned by xml_get_current_line_number()) is also printed.

Now, while this example shows oft the basic concepts of invoking the XML parser,
registering callback functions, and processing data, it doesn’t exactly demonstrate the
common usage of an XML parser. It doesn’t process information; raw data is just read
in and scanned for a string—nothing that couldn’t be done with traditional regular
expressions. In most situations where you process XML, you’ll want to keep at least a
basic representation of the document structure.

Stacks, Depths, and Lists

Our second example illustrates how to remember the element depth the parser is
currently processing. In the start-element handler the global $depth variable is
increased by four; in the stop-element handler it’s decreased by the same figure. This is
the most reduced case of a parser stack—no structure other than depth information is
being kept. As an XML pretty printer, the example uses the depth to properly indent
code. The handler functions simply apply a Cascading Style Sheet to the current data
to produce nicely formatted output. The only other noteworthy part of the code is
this line:

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);

This disables case folding for the parser, telling it that the case of element names
should be preserved. If this option is enabled, all element names are transformed to
uppercase. Usually, you’ll want to turn this off, as case is important for element names
in XML.

We won't print the source code of the example here because of its simplicity; you
can find it on the CD-ROM. Figure 7.4 shows a screen shot of the output.

253

254 Chapter 7 Cutting-Edge Applications

ew Go Communicator Help

1 Bookmarks 4 | [hitp: 4w phpwebdev. com 1034 /#ML_PrettyPrinter. php3])" \what's Releted ﬂ

Web-Application-Development with-PHP

<home. page>
<head>
<citler
My Home Page
</titler
<titles
My Second Howe Page
<fritle>
</head>
<body>
<titles
Veleome to Uy Home Page
</ritle>
<rulex
</rule>
<para>
Sorry, this home page is still
under construction. Plesse come
back soon!
<?php print("ve got even PHP in here.");?>
</para®
</nody>
</ howe . page>

= == [Document: Done: s SEN e

Figure 7.4 Output of the XML pretty printer.

Usually, this naive approach of maintaining just one depth variable is not enough. With
event-based parsers, you’ll usually end up using your own stacks or lists to maintain
information about the document’s structure. This is evidenced quite well by the next
example, shown in Listing 7.3.

Listing 7.3 XMLStats—collecting statistical information about an XML document.

require("xml.php3");

// The first argument is the file to process
$file = $argv[1];

// Initialize variables
$elements = $stack = array();
$total_elements = $total chars = 0;

/] The base class for an element
class element

{
var $count = 0;
var $chars = 0;
var $parents = array();
var $childs = array();
}

/] Utility function to print a message in a box

PHP and XML 255

function print_box($title, $value)

{
printf("\n+%'-60s+\n", "");
printf("|%20s", "$title:");
printf("%14s", $value);
printf("%26s;\n", "");
printf("+%'-60s+\n", "");

}

// Utility function to print a line
function print_line($title, $value)
{
printf("%20s", "$title:");
printf("%15s\n", $value);
}

// Sort function for usasort()
function my_sort($a, $b)

{
return(is_object(%$a) && is_object($b) ? $b->count - $a->count: 0);
}

function start_element($parser, $name, $attrs)

{
global $elements, $stack;

/| Does this element already exist in the global $elements array?
if(!isset($elements[$name]))

{
// No - add a new instance of class element
$element = new element;
$elements[$name] = $element;

}

// Increase this element's count
$elements[$name] ->count++;

/] Is there a parent element?

if (isset($stack[count($stack)-11))

{
/] Yes - set $last_element to the parent
$last_element = $stack[count($stack)-1];

/] If there is no entry for the parent element in the current
/| element's parents array, initialize it to @
if(!isset($elements[$name]->parents[$last_element]))

{

$elements[$name] ->parents[$last_element] = 0;
}

/] Increase the count for this element's parent

continues

256 Chapter 7 Cutting-Edge Applications

Listing 7.3 Continued

$elements[$name] ->parents[$last_element]++;

/| If there is no entry for this element in the parent's
/] elements' child array, initialize it to 0
if(!isset($elements[$last_element]->childs[$name]))
{

$elements[$last_element]->childs[$name] = 0;

}

/] Increase the count for this element parent in the parent's
// childs array
$elements[$last_element]->childs[$name]++;

}

// Add current element to the stack
array_push($stack, $name);

}
function stop_element($parser, $name)
{
global $stack;
/] Remove last element from the stack
array_pop($stack);
}
function char_data($parser, $data)
{
global $elements, $stack, $depth;
/] Increase character count for the current element
$elements[$stack[count ($stack)-1]]->chars += strlen(trim($data));
}

/| Create Expat parser
$parser = xml_parser_create();

// Set handler functions

xml_set_element_handler($parser, "start_element", "stop_element");
xml_set_character_data_handler($parser, "char_data");
xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);

/| Parse the file
$ret = xml_parse_from file($parser, $file);
if(!$ret)
{
die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($parser)),
xml_get_current_line_number($parser)));

}

/| Free parser
xml_parser_free($parser);

/| Free helper elements
unset($elements["current_element"]);
unset($elements["last_element"]);

/] Sort $elements array by element count
uasort($elements, "my_sort");

/] Loop through all elements collected in $elements
while(list($name, $element) = each($elements))

{

}

print_box("Element name", $name);

print_line("Element count", $element->count);
print_line("Character count", $element->chars);

printf("\n%20s\n", "* Parent elements");

// Loop through the parents of this element, output them
while(list($key, $value) = each($element->parents))

{
print_line($key, $value);

}
if (count($element->parents) == 0)
{
printf("%35s\n", "[root element]");
}

// Loop through the childs of this element, output them
printf("\n%20s\n", "* Child elements");
while(list($key, $value) = each($element->childs))
{

print_line($key, $value);

}
if (count($element->childs) == 0)
{
printf("%35s\n", "[no childs]");
}

$total_elements += $element->count;
$total chars += $element->chars;

// Final summary
print_box("Total elements", $total_elements);
print_box("Total characters", $total_chars);

PHP and XML

257

258 Chapter 7 Cutting-Edge Applications

This application uses Expat to collect statistical data about an XML document. For
each element, it prints a bunch of information:

= How many times it occurred within the document
= How much character data was found within this element

= All parent elements encountered

= All child elements

To achieve this, the script needs at the very least to know the parent element for the
current element. This is not possible using the normal XML parser—you only get
events for the current element, and no contextual information is recorded. Thus we
needed to set up our own stack structure. We could have used a FIFO stack (First In,
First Out) with two elements, but to give you a better example of keeping element
nesting information within a data structure, we voted for a FILO (First In, Last Out)
stack. This stack, which is a normal array, holds all currently open elements. In the
open-element handler, the current element is pushed on top of the stack using
array_push().Accordingly, the end-element handler function removes the top
element with array_pop().

A note on array_pop() and array_push().These and many other useful functions
dealing with arrays have been added only in PHP 4.0. We wanted to port them over
to PHP 3.0, but it’s difficult to implement them efficiently in native PHP (to backport
it to PHP 3.0) because of the way unset () works.To pop an element oft the stack,
you would use a snippet like this:

unset($array[count($array) - 1]);

If this would work well, it would be trivial to implement array_pop()- however, it
doesn’t work well. With PHP, unset () leaves holes in the array—it doesn’t reset the
“index counter.” You can easily verify this yourself:

$array = array("a");

unset($array[0]);

$array[] = "a";

var_dump ($array);
The element a will now have the key 1, instead of the expected . This leads to
fragmented arrays—unsuitable for a stack. This behavior has its reasons with every
other element in the array: If the hole was eliminated, the array would need to be
reorganized, which would be undesirable in many situations. To work around this
problem, we’d need an array_compact() version—which doesn’t exist in PHP at
the time of this writing. The only conclusion to draw is this: Use PHP 4.0. In the
PHP 3.0 implementation of the example (see the CD-ROM), we had to use the
$depth variable to keep track of the element nesting manually. This introduces another
global variable and is not as elegant as array_pop() and array_push (), but it works.

PHP and XML 259

To collect information about each element, the scripts needs to remember all
occurrences of each element. We use a global array variable, $elements, to hold all
distinct elements of the document. The array entries are instances of the element class,
which has four properties (class variables):

Property Description

count The number of times the element was found in the document.
chars Bytes of character data within this element.

parents Parent elements.

childs Child elements.

As you see, it’s no problem to keep class instances within an array.

Tip: A peculiar language feature of PHP is that you can traverse class structures just
like you would traverse associative arrays, using the while(list() = each()) loop
shown in Chapter 1, “Development Concepts.” It will show you all class variables and
method names as strings.

Each time an element is found, the count element in the corresponding elements
array item is incremented. In the parent’s entry (parent meaning the last opened
element tag), the current element’s name is appended to the childs array entry. The
parent element is added to the array entry with the key parents.The rest of the code
loops through the elements array and its subarrays to display the statistics. While this
produces a nice output, the code per se is neither of particular elegance nor does it
consist of clever tricks: It’s a loop like you probably use every day simply to get the
job done.

DOM—Document Object Model

The other main family of XML parsers are those that enable access to a Document
Object Model (DOM) structure. As you've seen, with event-based parsers you often
have to set up your own data structures. The DOM approach avoids that requirement
by building its own structure in main memory. Rather than responding to specific
events, you work with this structure to process the document. While event-based
parsers read an XML document in small chunks, reducing parsing memory usage and
increasing performance, DOM parsers need to create an in-memory representation of
the whole document. This uses more memory—keep this in mind when working with
large documents.

The DOM Level 1.0 was defined as a standard (W3C Recommendation) in
October 1998 by the (by now probably well known) W3C organization. You may have
heard of the DOM standard already in another context: The term is also commonly

260 Chapter 7 Cutting-Edge Applications

used to describe the object model of HTML pages that can be accessed with
JavaScript. For example, to read the value of a form field, you could use the following
JavaScript snippet:

fieldvalue = document.myform.myfield.value;

Notice the hierarchy expressed in the statement. document is the root element and
myform denotes an HTML form, within which myfield is a text field. Indeed, the
HTML DOM is an extension of the core Document Object Model defined by the
W3C.The DOM core represents the functionality used for XML documents, and also
serves as the basis for the HTML DOM. It’s a collection of objects that you use to
access and manipulate the data and markup stored in an XML document. It defines
the following:

= A set of objects for representing the complete structure of an XML document
= A model of how these objects can be combined

= An interface for accessing and manipulating these objects

By abstracting the document, the DOM exposes a tree, with parent and child nodes,
and methods like getAttribute() for the nodes. Put short, DOM provides you with a
standard, object-oriented and tree-like interface to XML documents.

The DOM specification is programming-language-independent. The specification
recommends an object-oriented implementation, thus requiring a language with at
least basic object-orientation features. It defines a set of node types (interfaces), which
taken together form the complete document. Some types of nodes may have child
nodes, others are leaf nodes that cannot have anything below them. We’ll continue by
describing these node types, as they’re outlined in the original W3C specification.
Please refer to the specification for a detailed description of all methods and attributes
of each instance.

Document

The Document interface is the root node of the structure tree. This interface can
contain only one element, which is the XML document’s root element. It can also
contain the document type declaration associated with this document (organized in a
DocumentType interface), and, if available, processing instructions or comments from
outside the root element.

Since the other nodes are all placed below the Document node, the Document
interface contains a number of methods to create subnodes. Using these functions, it’s
possible to construct a complete XML document programmatically. The specification
also defines a method getElementsByTagName () to retrieve all elements with a given
tag name in the document.

PHP and XML

DocumentFragment

A DocumentFragment node is a portion of a complete XML document. It’s often
necessary to rearrange parts of a document or to extract part of it; for this, a
lightweight object is needed to hold the resulting fragment. For example, imagine you
want to construct a single book file out of many different chapter files—each chapter
could be read into the DocumentFragment object and inserted into the book’s
document structure. Without a way to organize fragments of documents, you'd have to
add each element of each chapter one by one to the book document.

To make it even easier, the specification defines that when DocumentFragment is
inserted into a node, only the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the node.

DocumentType

The DocumentType node holds the document type declaration of a document, if
present. This interface is read-only; it cannot be altered through the DOM at this time.

Element

Each element in a document is represented by an Element node. To get the name of
the element, the tagName property can be used. This interface also defines a series
of functions to set and get element attributes, and to access sub-elements.

Attr

An Attr node represents an element attribute in an Element object. Name and value
of the attribute can be read for the name and value properties of the interface. The
specified property tells you whether the user specified a value for this Attr or

the value is the default string specified in the DTD.

EntityReference

This node represents an entity reference found in the XML document. Note that
character references (for example, &1t;) are expanded by the XML parser and are thus
not made available as EntityReference nodes.

Entity

This node represents an entity, either parsed or unparsed.

ProcessingInstruction

The ProcessingInstruction node represents a processing instruction (PI) in a
document. It has only two attributes, namely target (the PI target) and data
(the contents).

261

262 Chapter 7 Cutting-Edge Applications

Comment

This CharacterData interface represents the content of a comment, i.e. all the
characters between <! -- and -->. It has no further attributes or methods.

Text

The Text CharacterData interface represents the character data (textual content) of an
Element or Attr note. The Text interface has no attributes, and only one method,
namely splitText().This method splits one Text node into two, which can be useful
for rearranging content.

CDATASection

The CDATASection interface inherits the Text interface (and with it the
CharacterData interface) and holds the CDATA section.

Notation

This node represents a notation declared in the document type declaration.

Basic Interfaces

All these objects inherit the Node interface, which is the primary basic datatype for the
DOM. It represents a single node in the document tree structure. The Node interface
defines the attributes and methods you’ll use most often when dealing with the
DOM. To traverse a document, for example, you would use the childNodes attribute
containing all children and the nextSibling attribute containing the next node on the
same level. Methods like appendChild() and removeChild() can be used to alter the
tree structure.

The only objects not directly derived from a Node interface are CDATASection, Text,
and Comment. Text and Comment are derived from the CharacterData interface;
CDATASection inherits Text.The CharacterData interface extends Node with a set of
attributes and methods for accessing character data. For example, you can use
substringData() to extract part of the character data.

Example: Analyzing a Short Document with the DOM

The easiest way to get an idea about the concrete implementation of the DOM is by
seeing how a sample XML document would be handled by a DOM-compliant
processor. Let’s create a short book document:

<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "docbookx.dtd">
<book>
<title>
Cutting-Edge Applications
</title>
<para language="en">

PHP and XML 263

Sample paragraph.
</para>
</book>
A DOM representation of this document will be organized in a hierarchical structure
like the one shown in Figure 7.5. In a DOM-compliant API, code could be similar to
the following pseudocode:

/1 Construct Document class instance
$doc = new Document("file.xml");

// Output the root element's name
printf("Root element: %s<p>", $doc->documentElement->tagName);

/] Get all elements below the root node
$node_list = $doc->getElementsbyTagName("*");

/] Traverse the returned node list
for($i=0; $i<$node_list->length; $i++)

{

/| Create node

$node = $node_list->item($1i);

/] Output node name and value

printf("Node name: %s
", $node->nodeName);

printf("Node value: %s
", $node->nodeValue);
}

Document
|]
Element: book Document Type
Element: title Element: para
|—| I_I L
|
Text: Cutting-Edge Attribute: Text: Sample
Applications language paragraph

Figure 7.5 DOM structure.

264 Chapter 7 Cutting-Edge Applications

LibXML—A DOM-Based XML Parser

Since version 4.0, a new XML parser is built into PHP: LibXML. Daniel Veillard
originally created this parser for the Gnome project to offer a DOM-ready parser for
managing complex data exchange, and Uwe Steinman integrated it into PHP.

While LibXML5 internal document representation is very close to the DOM
interfaces, it’s misleading to call LibXML a DOM parser: Parsing and DOM usage
really happen at different times in a document’s life. It would be feasible to create an
API above Expat to provide a DOM interface. The LibXML library makes this much
easier, though—it’s merely a matter of changing the API to match the DOM
specification. Indeed, there is a GDome module in Gnome, which implements a
DOM interface for LibXML.

Note: At the time of this writing, the LibXML API in PHP was being finalized. It
was unstable and contained bugs—nonetheless it already showed the tremendous
benefits the finished LibXML API will offer. Therefore, we decided to document the
basic principles here and provide some examples; if changes occur, we’ll document
them on the book’s Web site.

Overview

Most developers will agree that an XML document is best represented in a tree
structure. LIbXML provides a nice API to construct trees and DOM-like data
structures from an XML file. When you parse a document with LibXML, PHP
constructs a set of classes, and you’ll work with them directly. By invoking functions
on these classes, you can access all levels of the structure and modify the document.

The two most important objects you’ll spot when working with LibXML are
document and node objects.

XML Documents

The abstract XML document is represented in a document object. Such objects are
created by the functions xmldoc (), xmldocfile(), and new_xmldoc().

The function xmldoc() takes as its only argument a string containing an XML
document. The xmldocfile() function behaves very similarly, but takes a filename as
argument. To construct a new, blank XML document, you can use new_xmldoc().

All three functions return a document object, which has four associated methods
and one class variable:

= root()

= add_root()
= dtd()

= dumpmem()

= version

PHP and XML

The function root() returns a node object containing the root element of the
document. On empty documents as created by new_xmldoc(), you can add a root
element using add_root (), which will return a node object as well. The function
add_root () expects the name of the element as first argument when called as class
method.You can also call it as global function, but then you need to pass a document
class instance as first argument, and the name of the root element as second argument.

The dtd() function returns a DTD object with no methods, and the class variables
name, sysid, and extid.The name of a DTD is always the name of the root element.
The variable sysid contains the system identifier (for example, docbookx.dtd); the
extid variable contains the external or public identifier. To convert the in-memory
structure to a string, you can use the dumpmem() function. The version class variable
contains the document’s XML version, usually 1.0 today.

With these explanations, you’re ready for a first, simple example. Let’s construct a
Hello World XML document with LibXML:

$doc = new_xmldoc("1.0");

$root = $doc->add_root("greeting");
$root->content = "Hello World!";
print(htmlspecialchars($doc->dumpmem()));

This will result in a well-formed XML document:

<?xml version="1.0"?>
<greeting>Hello World!</greeting>

The example also shows one property you don’t know yet—accessing the contents of
a node object.

Nodes

The Tao Te King says everything is Tao. In XML parsing, everything is a node.
Elements, attributes, text, PIs, and so forth—from a programmer’ point of view, you
can treat them all in a very similar way, because they’re nodes.

As we’ve already mentioned, nodes can be the most basic, atomic structure in an
XML document. A node object has the following associated functions and variables:

= parent()

= children()

= new_child()
= getattr()

» setattr()

= attributes()
= type

= name

= if available, content

265

266 Chapter 7 Cutting-Edge Applications

With these functions and properties, you can get all available information about a
node.You can access its attributes, child nodes (if any), and parent node. And you can
modify the tree by adding children or setting attributes. Listing 7.4 shows the
functions in action. This is the XML pretty printer mentioned earlier in the Expat
section, ported to LibXML—instead of registering handler functions, it applies
different formatting according to the node’s type. Each node has an associated type.
The type identifier is a PHP constant, and you can see the complete list in the
example’s source. Using the children() function, which returns the node’s child
elements (as node objects), it’s easy to loop through the document. The example
performs the loop recursively by calling the output_node() function again.

Listing 7.4 XML pretty printer—example using the LibXML functions.

/| Define tab width
define("INDENT", 4);

function output_node($node, $depth)
{
// Different action per node type
switch($node->type)
{
case XML_ELEMENT_NODE:
for($i=0; $i<$depth; $i++) print(" ");

// Print start element
print("<");
print($node->name);

/] Get attribute names and values
$attribs = $node->attributes();
if(is_array($attribs))

{
while(list($key, $value) = each($attribs))
{
print(" $key = $value");
}
}

print(">
");

/| Process children, if any
$children = $node->children();
for($i=0; $i < count($children); $i++)
{
output_node($children[$i], $depth+INDENT);
}

// Print end element
for($i=0; $i<$depth; $i++) print(" ");

PHP and XML

print("&1t;/");
print($node->name);
print(">
");
break;

case XML_PI_NODE:
for($i=0; $i<$depth; $i++) print(" ");
printf("<?%s %s?>
", $node->name,
=$node->content);
break;

case XML_COMMENT_NODE:
for($i=0; $i<$depth; $i++) print(" ");
print("<!-- ");
print($node->content);
print(" -->
");
break;

case XML_TEXT_NODE:

case XML_ENTITY_REF_NODE:

case XML_ENTITY_REF_NODE:

case XML_DOCUMENT_NODE:

case XML_DOCUMENT_TYPE_NODE:

case XML_DOCUMENT_FRAG_NODE:

case XML_CDATA_SECTION_NODE:

case XML_NOTATION_NODE:

case XML_GLOBAL_NAMESPACE:

case XML_LOCAL_NAMESPACE:

default:
for($i=0; $i<$depth; $i++) print(" ");
printf("%ss
", isset($node->content) ? $node->content : "");

}

// Output stylesheet

7>

<style type="text/css">

<!--

.xml { font-family: "Courier New", Courier, mono;
font-size: 10pt; color: #000000}

.element { color: #0033CC}

.attribute { color: #000099}

.pi { color: #990066}

-->

</style>

<?

/| Process the file passed as first argument to the script
$file = "test.xml";

// Initial indenting
$depth = 0;

continues

267

268 Chapter 7 Cutting-Edge Applications

Listing 7.4 Continued

/| Check if file exists
if(!file_exists($file))
{

die("Can't find file \"$file\".");
}

/| Create xmldoc object from file
$doc = xmldocfile($file) or die("XML error while parsing file \"$file\"");

/] Access root node
$root = $doc->root();

/] Start traversal
output_node($root, $depth);

/] End stylesheet span
print("");

One of the great advantages of LibXML over Expat is that you can also use it to
construct XML documents. This avoids messing around with custom XML creation
routines and frees you from tasks like remembering the nesting level to properly close
tags. Listing 7.5 takes our earlier Hello World example a step further and constructs a
complete RSS document (RSS stands for Rich Site Summary, an XML format to
provide content information for Web sites). It uses setattr() to add attributes to an
element and new_child() to add elements to a node. Have you noted the way
new_child() is used? The function returns a node object, and you can simply discard
that return value if you don’t need it—you only need to assign it to a variable if you
want to add child elements to the note you’ve just created.

Listing 7.5 Using LibXML routines to construct XML documents.

$doc = new_xmldoc("1.0");

$root = $doc->add_root("rss");
$root->setattr("version", "0.91");

$channel = $root->new_child("channel", "");

$channel->new_child("title", "XML News and Features from XML.com");
$channel->new_child("description", "XML.com features a rich mix of information and
=services for the XML community.");

$channel->new_child("language", "en-us");

$channel->new_child("link", "http://xml.com/pub");
$channel->new_child("copyright", "Copyright 1999, 0'Reilly and Associates and
=Seybold Publications");

$channel->new_child("managingEditor", "dale@xml.com (Dale Dougherty)");
$channel->new_child("webMaster", "peter@xml.com (Peter Wiggin)");

PHP and XML

$image =$channel->new_child("image", "");

$image->new_child("title", "XML News and Features from XML.com");
$image->new_child("url", "http://xml.com/universal/images/xml_tiny.gif");
$image->new_child("link", "http://xml.com/pub");
$image->new_child("width", "88");

$image->new_child("height", "31");

print(htmlspecialchars($doc->dumpmem()));

XML Trees

The methods outlined above construct separate objects for the document and for each
node. While this is great for looping through the document as shown in the XML
pretty printer, accessing single elements tends to get a bit cumbersome. Do you
remember our sample Hello World document from earlier in the chapter?

<?xml version="1.0"?>
<greeting>Hello World!</greeting>

To access the contents of the root element, you'd have to use the following code:

/| Create xmldoc object from file
$doc = xmldocfile("test.xml") or die("XML error while parsing file \"$file\"");

/| Access root node
$root = $doc->root();

/| Access root's children
$children = $root->children();

// Print first child's content

print($children[0@]->content);
And that’s for a depth of one; imagine how you’d have to continue with deeper nested
elements. If you think that this is a bit too much work, we agree. Fortunately, Uwe
Steinman agrees too, and has provided a more elegant method of random access to
document elements: xmltree (). This function creates a structure of PHP objects,
representing the whole XML document. When you pass it a string containing an XML
document as first argument, the function returns a document object. The object is a bit
different from the one described earlier, though: It doesn’t allow functions to be called,
but sets up properties of the same. Instead of getting a list of child elements with a
children() call, the children are already present in the structure (in the children class
variable)—making it easy to access elements in every depth. Accessing the contents of
the greeting element would therefore be done with the following call:

// Create xmldoc object from file
$doc = xmldocfile(join("", file($file)) or die("XML error while parsing
=file \"$file\"");

print($doc->root->children[0]->content);

269

270 Chapter 7 Cutting-Edge Applications

That looks infinitely better now. When you dump the structure returned by xmltree()
with var_dump (), you get the following output:

object(Dom document) (2) {
["version"]=>
string(3) "1.0"

["root"]=>

object(Dom node) (3) {
["type"]=>
int(1)

["name"]=>
string(8) "greeting"

["children"]=>

array(1) {
[o]=>
object(Dom node) (3) {
["name"]=>

string(4) "text"

["content"]=>
string(12) "Hello World!"

["type']=>
int(3)
}
}
}
}

You see that this is one large structure, with the whole document ready in place. The
actual parts of the structure are still document or object nodes; indeed, internally

the same class definitions are used. In contract to objects created with xmldoc() and
friends, though, you can’t invoke functions on these structures. Consequently, the
structure returned by xmltree() is read-only at this time—to construct XML
documents, you need to use the other methods.

Interchanging Data with WDDX

Now that you've learned how to create and process XML documents, it’s time to
introduce you to a real application of this technology. You’ve heard that XML is cross-
platform, vendor-independent, and supported well by PHP and other programming
languages. What about using XML to communicate between different platforms, or
between different programming languages? WDDX does exactly that.

Interchanging Data with WDDX 271

The Web Distributed Data eXchange (WDDX)

WDDX is an open technology proposed by Allaire Corporation; it’s an XML
vocabulary for describing basic and complex data structures such as strings, arrays, and
recordsets in a generic fashion, so that they can be moved between different Web
scripting platforms using only HTTP. PHP supports WDDX, and so do most other
prominent Web scripting languages; for example, Perl, ASP, and ColdFusion.

The Challenge

As Web applications play an ever-increasing role in the software world, one of the
most important challenges is data exchange between different programming
environments. The new Web promotes distributed, networked applications. First, there
were simple Web sites with static information. They grew into more advanced
dynamic Web applications, and now these Web applications are beginning to work
together, to exchange data, to offer additional, programmable services. It was only
recently that open standards like XML emerged and gained widespread use, and that
the market forced vendors to adopt these standards in their products.

By extending Web applications to implement open programming interfaces for data
exchange and modification, the intelligence of the Web experiences a huge increase.
Suddenly, applications can talk to each other—they evolve from closed, proprietary
‘Web sites to a new generation of wired business applications.

‘Web applications can expose an API or make data structures available: Data
exchanges between distributed servers becomes possible. WDDX offers one possible
solution for exchanging structured data. WDDX consists of two parts; one part deals
with abstracting data into an XML representation called WDDX packets; the other part
translates data structures to and from the scripting environment and WDDX packets.

WDDX is not a remote procedure call facility: There is no way in pure WDDX to
invoke a function on a server, which then returns a WDDX packet. How to transfer
packets is completely up to you. For this reason, WDDX has no provision for
security—it’s your task to select a communications channel of appropriate security and
allow only authorized parties to access the WDDX part of your system.

Possible Scenarios

Whether for synchronizing data, centralizing data serving, or performing business-to-
business communications, structured data exchange opens a new dimension in
distributed computing. For example, imagine that you operate an e-commerce Web
site. Wouldn't it be great if you could provide customers with package tracking during
the shipment? This could be implemented easily if UPS or FedEx provided a way to
query for a shipped item programmatically. By opening formed customer-centric
services (most couriers do allow tracking packages for their customers) to distributed
computing (package tracking as programmable API), a new form of application
interaction is made possible.

272 Chapter 7 Cutting-Edge Applications

In another scenario, WDDX could be used in server-to-server interaction. Certain
services may work best on a Windows NT platform; for example, querying an SAP
back end using a COM connector. You could use ASP for this, and hand over the
query results as WDDX packets to your PHP application on a UNIX Web server.
There the packets would be turned into PHP data structures, such as arrays,
transparently and without any further work.

Abstracting Data with WDDX

The most important fact up front: WDDX is XML. The possible WDDX structures
are defined in an XML DTD, and therefore valid WDDX packets are always well-
formed and potentially valid XML. The specification doesn’t require WDDX packets
to be valid, as they don’t need to include a document type declaration in the
document prologue.

The basic idea is that WDDX lets you transform any standard data structure—
integers, strings, arrays, etc.—into an XML representation, which conforms to the
WDDX DTD. This data can then be transferred over any communications channel
capable of transferring XML: HTTP, FTP, email, etc. At any time, the data can be read
from the WDDX format back into exactly the same structure as before. During this
whole conversion process, datatypes are preserved. If you serialize an array as WDDX
packet, it will be an array again at deserialization time.

Now, if this was all, it wouldn’t be very exciting. After all, you can serialize any data
structure in PHP into a proprietary form using serialize() and bring it back with
deserialize() as many times as you like. The interesting aspect of WDDX is that the
serialized representation is in XML, and the serializer and deserializer modules are
cleanly separated from it. Each of the programming languages supporting WDDX will
be able to serialize and deserialize WDDX packets. Serialize a PHP array to a WDDX
packet, deserialize the packet in ASP—and you’ve got an array again! The actual
implementation of the serializer/deserializer is not important; in PHP, you’ve got the
wddx_* () functions; in ColdFusion, you use the CFWDDX tag; in ASP,a COM
component is available.

Sure, all this could be done without WDDX. Doing so would be pretty
complicated, though, especially when you think of preserving datatypes across different
programming environments. The advantage of WDDX is that it frees you from this
undertaking and provides a flexible, open, and pragmatic way for exchanging
structured application data.

WDDX Datatypes

Most programming languages share a common set of datatypes; for example, strings or
arrays. Accessing these structures may vary from language to language, but the general
idea remains: A string is a series of characters, and whether you enclose them with a
single quote, double quotes, or not at all doesn’t matter from a conceptual point of view.

Interchanging Data with WDDX

WDDX supports these generic datatypes. In version 1.0 of the specification, the
following types are defined:

= Null values: null element
= Boolean values: bool

= Numbers (with no distinction between integers and floating-point numbers):
number

= Strings: string

= Date/time values: dateTime
= Indexed arrays: array

= Associative arrays: struct

= Collections of associative arrays, a set of named fields with the same number of
rows of data: recordset

= Binary objects, at this time encoded with Base64: binary

Al WDDX packets follow a common XML format. The root element is wddxPacket,
with an optional version attribute specifying the version of the WDDX DTD. The
version number, currently 1.0, is bound to and defined in the DTD. This means that
any WDDX packet with a version of 1.0 is valid only when used with the WDDX
DTD 1.0, and not with 2.0 or 0.9.

The header element must follow right below the root wddxPacket element. The
header can contain only one comment element, and nothing else.

The next required element is data, denoting the body of the packet. Within this
elen1ent,exacdy one null, boolean, number, dateTime, string, array, struct,
recordset, or binary element must appear. A sample WDDX packet is shown in
Listing 7.6.

Listing 7.6 A sample WDDX packet.

<wddxPacket version='1.0'>
<header/>
<data>
<struct>
<var name='string'>
<string>This is a 'string'.</string>

</var>

<var name='int'>
<number>42</number>

</var>

<var name='float'>
<number>42.5</number>
</var>
<var name='bool'>
<boolean value='true'/>
</var>

continues

273

274 Chapter 7 Cutting-Edge Applications

Listing 7.6 Continued

<var name='array'>
<array length='3'>
<number>1</number>

<number>2</number>
<number>3</number>
</array>
</var>
<var name='hash'>
<struct>
<var name='foo'>
<string>bar</string>
</var>
<var name='baz'>
<string>fubar</string>
</var>
</struct>
</var>
</struct>
</data>
</wddxPacket>

PHP and WDDX

Because WDDX uses XML for the representation of data structures, you need to
compile PHP with both XML and WDDX in order to use it. If you’ve done that, the
following functions are at your disposal:

= wddx_serialize_value()
= wddx_serialize_vars()
= wddx_packet_start()

= wddx_add_vars()

= wddx_packet_end()

= wddx_deserialize()

Using these functions, you can serialize PHP variables into WDDX packets and
deserialize WDDX packets.

The WDDX Functions
Using the WDDX functions, there are three different ways to construct a packet. The

most basic method is to use wddx_serialize value().This function takes one variable
plus an optional comment, and creates a WDDX packet out of it:

$var = "This is a string.";
print(wddx_serialize_value($var, "This is a comment."));

Interchanging Data with WDDX

And that’s it. This snippet will output the following WDDX packet:

<wddxPacket version='1.0'>
<header>
<comment>This is a comment.</comment>
</header>
<data>
<string>This is a string.</string>
</data>

</wddxPacket>
Note: Actually, this packet has been manually edited for clarity: The original packet as
created by PHP doesn’t contain whitespace or indentation.

The two other methods serialize multiple PHP variables into a WDDX struct
element, similar to the one shown in Listing 7.6. The wddx_serialize_vars() function
takes an arbitrary number of string arguments containing the names of PHP variables.
The function’s return value is the WDDX packets as string. The advantage of this is
that it lets you serialize multiple PHP variables into one WDDX packet; but note that
when fed to the deserializer, it will result in an associative array (of course—the
original distinct PHP variable has earlier been converted to a WDDX struct tag).

In code, a basic example for wddx_serialize_vars() could look like the following
snippet:

$string = "This is a string.";

$int = 42;

print(wddx_serialize_vars("string", "int"));

The trio wddx_packet_start(), wddx_add_vars(), and wddx_packet_end() works in
basically the same way: Multiple PHP variables are transformed into a WDDX struct
as well. The difference is that it works as a transaction with three steps, having the
advantage that you can add PHP variables to a WDDX packet over a longer
run—for example, during a complex calculation. By contrast, the function
wddx_serialize_vars() works in an atomic way.You start assembling a packet by
calling the wddx_packet_start() function, which takes one optional argument, the
header comment for the WDDX packet. This function returns a packet identifier,
similar to file identifiers returned with fopen().The identifier is used as the first
argument in the wddx_add_vars() function. The remaining arguments are exactly the
same as with wddx_serialize_vars(): an arbitrary number of strings, containing the
names of PHP variables. A basic example:

$i1 = $i2 = $i3 = "Foo";

$packet_id = wddx_packet_start("This is a comment");

for($i=1; $i<=3; $i++)

{
wddx_add_vars($packet_id, "i$i");

}
print(wddx_packet_end($packet_id));

275

276 Chapter 7 Cutting-Edge Applications

The example simply adds three string variables to a WDDX packet in a for() loop
and produces the following output (again, edited for clarity by adding proper
indentation):

<wddxPacket version='1.0'>

<header>
<comment>This is a comment</comment>
<data>
<struct>
<var name='it'>
<string>Foo</string>
</var>
<var name='i2'>
<string>Foo</string>
</var>
<var name='i3'>
<string>Foo</string>
</var>
</struct>
</data>
</wddxPacket>
Summary

This chapter has taught you everything you need to know about today’s cutting-

edge applications. You have learned how to design, create, and set up a knowledge
repository, store data appropriately in the repository, and retrieve it efficiently. We have
presented common data formats and open standards for data exchange, remote proced-
ure calling, and platform-independent data storage. Having read and understood these
techniques will enable you to implement key features of today’s high-performance

applications.

Case Studies

Knowing others is intelligence;
Knowing yourself is true wisdom.

-[415 FOLLOWING SECTIONS FEATURE THREE CASE STUDIES on the use of PHP on
large-scale Web sites and in commercial products. These case studies describe compa-
nies that have chosen PHP after careful evaluation of competing technologies, and that
depend on PHP for a great part of their daily business. Much of the text has been
provided by the companies profiled, and therefore shows concrete insight into their
development processes and technical facts. The case studies prove that PHP is a reli-
able, cutting-edge solution for server-side Web application development; we hope that
they can help you to convince management and colleagues of PHP’ advantages.

BizChek.com

You probably knew that HotMail, a Microsoft company, uses FreeBSD on its servers.
While it would be nice if we had a case study revealing that Microsoft uses PHP

for its Web-based mail, we have something at least equivalent: BizChek.com
(www.bizchek.com), the leading Web-based email provider for businesses, does use PHP.
With customers like Budweiser and Micro Warehouse and over 2 million registered
users, BizChek.com is one of the key players in the industry.

278 Chapter 8 Case Studies

Not only that—Mark Musone, CTO of Chek Inc., BizChek.com’s parent com-
pany, is an active PHP developer. He has written or co-written such useful modules
for PHP as IMAP and MCAL, which are part of PHP’ standard distribution.

Web Mail

With more than 70 employees, 8 of whom are programmers, BizChek is an important
market player in the Web-based e-communication/intranet market. When BizChek is
combined with the rest of the Chek Network, Chek.com consistently ranks within
the top 20 of the Internet’s 100hot listing (www.100hot . com).

BizChek occupies a unique position in the area of email business solutions. Though
the main application is a stand-alone Web-based email product, BizChek also ofters a
suite of productivity tools that add cohesion to the individual business while at the
same time increasing the organization’s overall effectiveness and productivity. BizChek
is more than an email product. Under a private-label arrangement, BizChek can help a
company establish an electronic identity. The company can brand itself with its
employees and the general business market by having a mail address with its company
name instead of a generic address (AOL, HotMail, and so on). Once a business
understands the tangible and intangible benefits derived from a Web-based
e-communication solution, the conversion or initiation of service is easy. Business
owners and managers alike are becoming aware of the benefits that an outsourced
Web-based e-communication product can bring.

BizChek offers a number of features including email, document/file sharing and
revision, task manager, calendar service, a company bulletin board, and many more.
When a financial comparison is done, outsourcing will dramatically lower a company’s
costs over time in almost every case. With no investment in hardware or software, and
no maintenance required from an IT standpoint, the savings become real and measur-
able. Outsourcing can also translate to lower risk by providing a professional, reliable
solution in which virus monitoring and spam prevention are all centrally administered
and controlled. This also points to the added intangible benefits an outsourced Web-
based communication product offers.

Choosing PHP

BizChek developers have used PHP since incorporation in early 1998, using PHP 2.0.
Although BizChek was built from the ground up around PHP, this doesn’t mean that
no other solutions were discussed or evaluated. The company’s experts spent several
months evaluating and challenging various ideas: ASP, Mod_Perl, and Cold Fusion.
They found that PHP was the best choice for BizChek, and since the beginning PHP
has been their primary focus. As a startup dot-com company with limited funds and
nothing but tons of hard work to offer initially, they found the Open Source commu-
nity very attractive. Although PHP, like many Open Source products, is not backed or
supported commercially by large companies, recent market studies have shown an

BizChek.com

enormous increase in site use and overall involvement in PHP. Netcraft’s Web server
survey, for example, found that PHP was used on over 1.4 million domains in
February, 2000, of 11 million total analyzed servers.' The BizChek developers believe
that if you compare these results, it’s not hard to see that PHP and other Open Source
products top their respective fields, even against commercial contenders from estab-
lished companies.

In their search for a scripting language, the BizChek developers evaluated many
viable options that might have produced a solution to fit their needs. The first two
options were Perl and various CGI scripting languages. Next was Microsoft’s power-
house ASP. Finally, two dark horses were recommended: Cold Fusion and PHP. With
their primary needs being server-side scripting and database connectivity, BizChek
developers could exclude any client-side scripting engines. Although they liked Perl as
an excellent general-purpose language, they felt that it was never truly optimized for
Web use, and fell short when dealing with heavy traffic across multiple Web sites; CGI
and Perl scripts can quickly saturate memory and CPU, resulting in performance
problems. Because ASP, Cold Fusion, and PHP work in conjunction with the Web
server without having to spawn extra processes, these became the logical choices for
further evaluation by BizChek. Although Cold Fusion might have been an acceptable
choice, it was still a newer product at this time—little was known about it, and this
made BizChek drop it as an option. BizChek figured that if Apache were chosen as
the Web server, Mod_Perl, which embeds the Perl interpreter directly into the Web
server, would produce results near to those of the PHP and ASP choices. Although
Mod_Perl might have been a great choice, the BizChek developers felt that it might
be lacking in dealing with high-volume Web applications. It was too much a general-
purpose language for them, whereas they saw PHP as very simple, yet very powerful,
and made specifically for the Web. There was no need to jump through any hoops to
get PHP to “work with the Web.”

ASP offered a wide variety of third-party components, but the initial and upkeep
costs were a large concern. The fact that ASP was also restricted to only Internet
Information Server and Microsoft’s Windows platforms further degraded it as an
option for BizChek. While ASP relies primarily on ODBC to make database connec-
tions, which could prove useful if you switch databases once a month, PHP and Perl
have native database connections, giving them a slight advantage. Debugging—which
every programmer knows can take a majority of a project’s time and be a true night-
mare if accuracy is not preserved—was also harder under ASP. PHP ofters precise error
messages that can effectively help to solve a problem.

Other advantages of PHP were seen in its clear C-like language syntax, the ease
with which it can be added to plain HTML, its extensibility, database connectivity, and
price. The final advantage was the support that the PHP community provides. An
extensive mailing list, one of the best online documentation centers, numerous online
and hardcopy tutorials, as well as a friendly sharing of knowledge between gurus and
beginners, make up this support chain.

279

280 Chapter 8 Case Studies

Another great aspect that many people overlook about Open Source products is
that development occurs continually and in some cases new versions are released
monthly. If you need a particular function you can add it yourself, if you have the time
and knowledge. This means that you no longer have to wait for the next release to see
whether your needs will be meet. Some of BizChek’s programmers belong to the
PHP development team and have contributed code that resulted from their own
needs. Although most work on PHP projects is done outside the office, it occasionally
occurs during company time; BizChek actively supports this activity, since most of the
code created will be plugged right back into its system. The BizChek developers have
been a contributing factor in a number of PHP modules, including MCAL, IMAP,
FTP, and Aspell. Originally these modules were created to support BizChek, but
because other programmers could benefit from the modules, and because the develop-
ers felt a compelling urge to give something back to the community, the extensions
were added to PHP’ core code. Some BizChek employees are also involved in small
developments with Apache and Linux.

Eager for Updates

BizChek was previously upgraded from PHP 2.0 to version 3.0, and is ready to be
migrated to PHP 4.0 as soon as it’s out of beta. Migration from 2.0 to 3.0 and from
3.0 to 4.0 betas was accomplished without any serious difficulties and only needed a
couple of small alterations.

Growing daily, the total system consists of about 200 files and 25,000-30,000 lines
of code. Seeing that only about 20 lines of code needed to be changed for each
upgrade, the BizChek developers were very happy with the exceptional backward sup-
port offered by PHP.

BizChek’s ambition to run PHP 4.0, already tested internally, is matched only by
the concern of using a beta on a production server. They already like the upgrades in
array manipulation, installation, and the new modules in PHP 4.0 betas. The upgraded
session-support system for PHP 4.0 was one of the major features BizChek was look-
ing for, especially since PHPLib didn’t exist during BizChek creation and they have
never switched to using it. While their in-house session-management system works
reliably, they’ll convert to using PHP 4.0’ built-in session support.

Conclusion

“PHP has worked wonderfully to meet our needs,” says CTO Mark Musone. “It has
worked in conjunction with Apache, MySQL, and Oracle, to name a few, very reliably
and with highest performance, resulting in efficient dynamic Web content with limited
problems and near 100% uptime. PHP is a clear advantage for our business, and we are
glad we can use it!”

SixCMS 281

SixCMS

Professional content-management systems have traditionally been the domain of large
companies and have been very cost-intensive, with standard products typically selling
for six-figure sums. How would you like a full-featured content-management system
(CMS) written in PHP? Six Open Systems (www.six.de) has one in its back pocket.

Company Background

Founded eight years ago, Six Offene Systeme GmbH (translated as Six Open Systems,
Inc., and referred to simply as “Six” in this case study) has been developing and
delivering sophisticated database applications using Open Source—based Internet and
intranet technologies for diverse sectors of industry. Six specializes in developing
individual solutions tailored to the goal of the enterprise, with an emphasis on the
targeted market, the product range, and the customer’ technical requirements. The
scope of the Six consulting services and tailored solutions include the development of
effective business models for the online presence, the definition of milestones with a
differentiated strategy for implementation, assistance with identifying mid- and
long-term profitability plans, utilizing business-process modeling for optimal resource
utilization, formulating technical requirements, and the development of detailed
requirement specifications. By applying the accumulated experience and know-how
that has resulted from more than four years of development experience, Six has now
released two standardized commercial solutions utilizing PHP: SixCMS (Content
Management System) and SixAIM (Account and Invoice Management). Six currently
employs 27 people as well as providing an excellent environment and opportunity for
students from various fields involved with IT and “new media” to research and fulfill
their practical semester and thesis requirements.

Of the 27 Six employees, 20 are directly involved in developing and programming
applications. One of the advantages Six has realized is based on the diverse educational
and experience backgrounds of its developers, who come from such fields as computer
science, physics, printing and publishing, cartography, agriculture, philosophy, and
systems management.

Open Source Business

Six still sees distinct advantages in the Open Source/System approach versus many of
the more proprietary technology approaches. Ranked as a market leader and provider
of world-class solutions throughout Germany and western Europe, Six opened an
office in New York City, New York, USA, in January, 2000.

282 Chapter 8 Case Studies

The SixCMS application is recognized by many people as being the number one
content-management system application in Europe. The application’s support of multi-
ple languages for the interface and its extensive functionality makes it an optimal solu-
tion for managing dynamic content-driven sites.

The corporate Web site (http://www.six.de) and the SixCMS-specific URL
(http://sixcms.com) provide additional information about the company, its customers,
and its solutions. These Web sites provide an excellent vehicle for the company to dis-
burse information about the company and its solutions; but word-of-mouth publicity
from satisfied customers currently results in nearly half the leads and new customers.
The Web presentation also provides an opportunity to showcase SixCMS in action and
create customer-specific demo and test sites.

Why PHP?

Ease of use and low licensing costs were naturally critical criteria in the selection of
PHP for Six. Cost and licensing requirements are a non-issue with PHP, while other
options would have cost thousands of dollars per development or active server. This is
a considerable advantage of employing Open Source technology as a solution
provider. You don’t get tied up with the customer discussing intricate scaled licensing
fees, and can therefore discuss total solution costs with respect to functionality of the
application alone. Performance of PHP also played a role, however, and the ability to
embed PHP as a module into the Apache Web server provided performance benefits
over other CGI methods. From a business standpoint, it made “just plain good sense”
to use PHP, ensuring cost-effective and high-performance applications. Six developers
have additionally considered, tested, and in some cases used Hexbase, WebSQL,
WebObjects, Cold Fusion, Oracle Web Application Server, CGI, embperl, Java, C, and
Perl. Although PHP is not the only development platform used at Six (Perl is still
being applied in some situations), well over 90% of its applications have been done
using PHP—a decision Six still supports today. All of the PHP applications were built
and developed using PHP first.

Additionally, the Open Source aspects of PHP contributed to its selection. In an
environment where Linux, Apache, and MySQL are being utilized, PHP fits very
nicely in this mix. The widespread use and growing acceptance of the Open
Source/System approach allows Six to use this environment very effectively for its
commercial solutions, such as SixCMS. It’s a very viable approach to take in this
market and provides an excellent method to deliver valuable intellectual capital in a
cost-eftective manner. Open Source technologies have gained and most likely will
continue to gain respect and support from industry, especially as its use becomes more
widespread and more solutions based on this technology become available. One of the
advantages of using Open Source solutions is that, if something isn’t working as
expected, you can at least have a look at the source code yourself. It has been the
experience at Six that it’s much easier and more timely to get support, changes, and
fixes for the Open Source components than the commercial ones. A simple posting to

SixCMS

one of the newsgroups or mailing lists often results in a number of qualified and help-
ful responses...in a matter of hours, if not minutes. Commercial and proprietary appli-
cations and environments are complicated and often “less than ideal” with respect to
both costs and proprietary mechanisms.

Meanwhile, Six supports the development of PHP both directly and indirectly. One
Six employee, Dr. Egon Schmid, is a PHP Documentation Group member and a con-
tributor to and coauthor of the PHP Book PHP. Dynamische Webaufiritte professionell
realisieren (Markt u. Technik, Haar; 1999). Additionally, Six developers contribute with
recommendations and opinions as participants in PHP mailing lists and user groups.
These efforts are both supported and encouraged on company time as well as privately.

Technology Considerations

Six recommends using PHP in many situations and uses PHP for most of its applica-
tions, including SixCMS. Particularly for layout-oriented sites with light-to-middle
traftic loads, or in situations in which an application needs to be built quickly from the
bottom up, PHP is an excellent platform. Naturally, it all boils down to the scope of
the project. As with any platform, PHP has limitations; in very large projects or sites
with extremely high activity, PHP can present a problem, especially if script runtime is
taken into consideration. If performance issues arise with respect to system load with
PHP, caching and preprocessing of code to create static pages should be implemented.
Generally speaking (this depends on a number of factors), it’s most likely necessary to
generate static pages if a site is getting somewhere around 500,000 fully dynamic page
views a month, or 5-10 queries concurrently for one page.

In specific situations, Six also uses Mod_Perl, but server configuration and kernel-
tuning requirements admittedly become more significant issues with this method. Perl
is very well thought out and has been around a long time; therefore it has a very con-
sistent language scheme and syntax. Additionally, because Mod_Perl is compiled and
held in memory, a Web site can be created from distinct components that have their
own named space and can be compiled separately from each other. It’s also possible
with Mod_Perl to directly intervene with the Apache handler, which makes it a very
fitting supplement to PHP and other scripting languages for the implementation of
proxies, specific rewrite-rules, and post-transaction handlers, for example. Six has also
tested both server-side and client-side Java, and although there have been some perfor-
mance and compatibility issues, server-side Java seems promising for specific future
applications. When compared to other technologies such as Mod_Perl, Java, Cold
Fusion, and ASP, generally speaking PHP is less costly, with fast performance, integrates
well with other technologies, and is very stable when embedded within Apache. But
are there problems with it? Basically, the PHP platform is good, but developers should
be aware of the limitations and the sometimes subtle changes in the programming
language or function calls between versions. Additional considerations such as
memory-handling problems—especially with strings that can literally waste megabytes
of server memory (a problem that hopefully will be addressed in PHP 4.0)—and poor

283

284 Chapter 8 Case Studies

Oracle integration needs to be recognized. The lack of consistency of the language
syntax and design, and implicit typecasting have also been noted as deficits by Six
developers.

Another issue with PHP is the simple fact that you have to pass the full source
code of your application to the customer or partner. The value of your applications as
intellectual property and capital, and the need to protect them, can be a significant
issue. Six has worked with a number of advertising and design agencies as partners for
Web site design, who, after having open access to Six’s code, began adding program-
ming ability to their graphic design skills...to become “competitors.” These are com-
panies who want to try to be a “one-stop shop” for Web solutions—unlike Six, which
focuses on its core competence of application development. One can certainly argue
that technology is developing so quickly that having your code open for all to see is
not a definitive critical problem in the long term. The ability to utilize a bytecode
compiler with PHP when it becomes available will improve this situation considerably,
and Six currently encapsulates substantial functions as compiled code in the database
itself to limit the effect of PHP code exposure or local changes being made by third
parties.

PHP in Real Life

The two previously mentioned commercial products, SixCMS and SixAIM, are exam-
ples of Six applications that have been realized with PHP 3.0. In its 3.0 version,
SixCMS has 283 files containing 25,000 lines of code and requires 1.2MB of disk
space. The application uses a MySQL database containing 40 tables. In comparison,
SixAIM has about 71,000 lines of PHP 3.0 code (plus another 10,000 lines of code
written in Oracle’s PL/SQL language code) and takes up 2MB of disk space. The
Oracle database includes nearly 200 objects: 65 tables, 25 database functions, 15 proce-
dures, and 8 packets, which incorporate an additional 45 functions and 30 procedures
(not including any special customer-specific functionality). Six has been and is cur-
rently using the standard or basic version of PHP; specifically versions 3.0.6, 3.0.7,
3.0.12, and for testing purposes 4.0b3. Six is planning to make the switch to the 4.0
version for new projects as soon as it’s no longer “beta” and runs stable. Although Six
has migrated a number of solutions from the 2.x to 3.x versions of PHP, it’s a time-
consuming task that’s also open to human error, even when automated with scripts.
Syntax and language changes plus functional variations, such as with array handling
and variable declaration, add migration time and testing requirements.

PHP has performed well for Six and its customers, but is not necessarily ideal for
higher-traftic sites, as mentioned earlier. Certain caching concepts have helped, and Six
has also used a reverse-proxy technique, so that the PHP-enabled server doesn’t get
tied up serving graphics and static pages. Six handles session issues with its own devel-
oped mechanisms and often utilizes cookies for session-dependent parameters. They
haven’t made much use of the PHPLib until now, but have identified a number of
excellent features and ideas in it. XML has also been incorporated into a number of

MarketPlayer.com 285

customer-specific applications when required, and additional open standards such as
LDAP, SMTP, and X509 have been applied in various projects. Six has recently insti-
tuted version control for some of its development projects using CVS, and plans to
extend its use to all development work in the future. The increase in programmers and
the opening of a branch office in Berlin have necessitated a reevaluation of managing
distributed development teams and projects. To this end, Six has also created a number
of its own tools (with PHP) to assist in the management of project and development
resources. Six has done solutions with a number of databases, including Oracle,
MySQL, postgres, Microsoft SQL Server, and Sybase. Again, due to its Open

Source philosophy and cost considerations, Six prefers using MySQL for most
non-transaction-based applications, and Oracle for transaction-based applications such
as SixAIM.

PHP has played and will continue to play a significant role in the success of Six and
its solutions, as well as its customers. The selection and utilization of PHP for Six
began in December 1996 with the PHP 2.0 beta, and currently is still a central com-
ponent for the SixCMS application. Utilization of PHP not only has supported the
company’s Open Source philosophy, but has provided a comfortable and expedient
environment for high-end application development.

PHP: A Business Advantage

Many of the functional and performance advantages of Six applications can be attrib-
uted directly to PHP, as well as the advantages of rapid development, the ability to
make modifications quickly and without recompiling, plus the ease of understanding
and using PHP effectively without previous knowledge or experience. These advan-
tages increase proficiency as well as reduce development overhead costs. This industry
dictates very short development and implementation time schedules, and PHP
provides a reliable middleware or application-server component to support these
turnaround time requirements.

MarketPlayer.com

Eric B. Schorvitz, Ph.D., and John E. Joganic from MarketPlayer.com provided this
detailed case study about a company implementing PHP in real life on a high-traffic
server farm.

Company Background

MarketPlayer.com offers real-life financial training to the individual investor who
wants to learn how to make money in the stock market. MarketPlayer.com’s
institutional-quality stock screening and charting tools help investors build their own
investment strategies, and its risk-free, fun, and exciting stock competitions enable
investors to test and trade an investment portfolio.

286 Chapter 8 Case Studies

MarketPlayer.com’s products are available for free at its own Web site,
www.marketplayer.com, and through strategic content alliances with leading media,
ISP, and financial services partners including AOL, CNBC, EXTRADE, money.com,
CompuServe, ESEC (Pan-European partner), internet.com, and others.

MarketPlayer.com employs 24 people in the areas of marketing, product develop-
ment, customer service, and programming. Three of the programmers are highly skilled
in C and PHP; two others are talented PHP programmers.

The PHP Products

MarketPlayer.com’s product offerings fall into two basic categories: quantitative financial
applications and online stock market trading-simulation software. To keep competitive
in these industries, MarketPlayer.com must continually determine how to improve
applications and content in order to remain one step ahead of the competition. For
example, MarketPlayer.com is the only site on the Web allowing investors to screen and
chart stocks based on a 12-month forward Constant Time Horizon Earnings Estimate
methodology—a technique favored by institutional money managers. MarketPlayer.com
has submitted multiple patent applications to protect the unique way in which the
online stock tournaments operate. MarketPlayer.com also has an expert staff of product
developers and programmers whose goal is to come up with new and useful Web-based
financial tools to assist the individual investor in obtaining the knowledge and experi-
ence necessary to be successful in the investment community.

Why PHP?

MarketPlayer.com uses PHP because of its ability to provide a rapid product-
development environment. Using PHP, MarketPlayer.com can take conceptual designs
from the blackboard and bring them into a beta environment in a matter of days. They
can then take the pieces of the application that need to be optimized (for speed), write
them in C, and include those functions in a custom PHP library.

MarketPlayer.com began using PHP in October of 1999 after deciding to expand
the product development group. Before PHP, MarketPlayer.com was using a server-
side include approach to generate dynamic pages. Thus, most of the company was
comfortable using WYSIWYG applications for Web development. PHP made it possi-
ble for MarketPlayer.com to build sophisticated, dynamic Web pages while still using
the talents of the existing group comfortable with WYSIWYG approaches to Web
development. The company had implemented solutions prior to PHP using Perl and
Java, but once PHP was introduced these other languages soon fell by the wayside.

MarketPlayer.com 287

The fact that PHP is Open Source provides many advantages for MarketPlayer.com
over other scripting languages:

= MarketPlayer.com can easily optimize applications by adding modules and func-
tions to the PHP source code that are MarketPlayer.com-specific.

= The number of places that you can go to get support is growing daily.

= Many individuals provide top-notch PHP applications to the general commu-
nity, with GNU licensing making the development of key products faster.

Advantages of PHP in MarketPlayer.com Product Development

MarketPlayer.com uses PHP over other technologies because of its simplicity in design,
the availability and extensibility of the source code, the tight integration with the
Apache Web server, and—perhaps most importantly—its similarity to the C program-
ming language. Perl may have been a second choice; however, lack of familiarity with
the language was a barrier to MarketPlayer.com programmers, and extensions for data-
bases and proprietary algorithms would have been costly. Cold Fusion was not evalu-
ated, and ASP’s reliance on a Windows platform made it a non-contender. Until
recently, MarketPlayer.com relied on server-side Java for specific user-configurable
requests. Over time, the code became too voluminous to maintain and was replaced
with a solution written entirely in PHP and C.The beta implementation is running
five times faster than the Java production system, with plenty of room for optimization.

No fundamental flaws have been identified in the system, but relative paths in the
include() statement have caused quite a bit of frustration, specifically when nesting
includes. C source and header files use their own directory as the base for relative
paths, whereas the PHP include statement uses the directory of the originally invoked
file. As such, maintaining a directory of source specifically for includes and referencing
those files from within a hierarchical directory structure can be complicated. The
workaround was to create a variable for the include directory and use only absolute
paths when including.

Additionally, integrating custom extensions has been complicated under PHP 3.0.
MarketPlayer.com has tested PHP 4.0 and is happier with that model, but until it’s out
of beta, deployment to production servers can’t be justified. Currently
MarketPlayer.com is running 3.0.12.

All things considered, MarketPlayer.com has not been constrained by any missing
components in PHP. There’s certainly an interest in a debugging tool that caters to
PHP if someone produces one; however, immediate needs call for a simple mechanism
for extending the functionality without invoking the overhead of a d1() call or
modifying PHP source directly.

288 Chapter 8 Case Studies

PHP Battling in Real Life

MarketPlayer.com’s applications vary in size from single scripts to entire site-
management packages. All told, there are at least 10,000 lines of code currently in PHP
and another 40,000 forecasted for the next quarter. As part of the development process,
common functionality is moved to inline functions, those functions are moved to C,
and the C code is ultimately incorporated into libraries for use by low-level integrators.
This strategy of top-down programming guarantees that focus stays on product delivery
rather than code production, as is necessary in the Web content industry.

PHP has proven scalable and fast as MarketPlayer.com uses it on high-traffic sites
without hassle. If constraints were encountered, migration to faster machines or a
change in network topography would be more likely than a pursuit for a difterent
technology. Constant profiling identifies bottlenecks and helps prioritize which PHP
code needs to be rewritten in C and linked in natively.

Sessioning

MarketPlayer.com uses two techniques for managing sessions. In the first case, the
user’s credentials are encrypted and stored on the client’s machine in the form of a
cookie. The immediate drawback is the requirement that every server providing
dynamic content be capable of decrypting the cookie. In the development environ-
ment, new features have been stalled, waiting for this functionality.

The second and more portable case involves a database table that maps unique, ran-
dom session identifiers to authenticated users. When the user authenticates using a
valid name and password, a new session identifier is generated and stored in the user
table along with IP address, time, and username. The user needs only a valid session
identifier and a connection from the originally authenticated IP address to connect.
From the point of view of security, a session identifier can be invalidated or expired by
removing it from the database. Additionally, using it from a different IP address is
silently ignored. Finally, credentials are sent only once. As for performance, only one
database call must be made, and all of the user’s information can be gathered via the
session identifier by joining tables.

The session identifier is provided to the user in two ways. In the first case, it’s
inserted into all the URLs on the page so that on-site links retain this information.
URLs are generated using a function that takes into account whether the user is
authenticated or not, and outputs the correct HTML. Additionally, it’s sent to the user
as a cookie. This has the effect of guaranteeing that any incorrectly defined links don’t
cause the client to “forget” the identifier. Moreover, browsers that either don’t support
or actively reject cookies can still log into the site. Cookie variables override GET
variables, so if the user bookmarks a page, the current session will override whatever
identifier may be specified in the bookmarked URL. Finally, if the user leaves the site
and returns before the session identifier expires, he or she remains authenticated.

MarketPlayer.com

PHP Server Integration

Because MarketPlayer.com’s PHP library is modified constantly, they have compiled
Apache for loadable modules and built a shared-object implementation for PHP. XML
is not used for content, but is used for internal configuration files. The GNU autoconf
and configure mechanism is used for deploying across the varied platforms of develop-
ment and production equipment.Virtually all MarketPlayer.com’s source is either
proprietary legacy code or Open Source. The database infrastructure is a composite

of MySQL for prototyping and minor chores, and Velocis for core functionality. The
efficacy of Velocis over other database solutions has yet to be fully demonstrated,;
however, to date, with existing code, the network organizational model appears to
outperform relational models. This may change as migration to new technology
continues.

Code Management

MarketPlayer.com’s content developers currently work under Windows NT with
Source Safe handling version control. However, all of the new technology code is
appropriately stored in CVS. When the content department has the necessary tools to
work entirely under Linux, the aim is to pull them back into CVS.

Product directors manage MarketPlayer.com teams and design and organize the
code while overseeing the implementation by team members. Prototype code 1s devel-
oped to alpha release and checked into CVS.These components are then distributed
to other developers and audited by the directors for security, efficiency, and design.
Subsequent releases alternate between feature additions, bug fixes, and design improve-
ments. Design teams are specialized and highly focused, allowing immediate respon-
siveness to the company’s needs.

PHP allows component interfaces to be relatively vague during the prototyping
phase, since functionality is normally implemented inline. As modules come together,
parameter order and function nomenclature can be finalized without forcing massive
rewrites. Using PHP, pending functionality can easily be simulated or bypassed in the
development environment; delivered functionality merges into PHP seamlessly. This
narrows the design to prototype interval and prevents delivery delays from affecting
other developers.

The Future

MarketPlayer.com is moving toward becoming a 100% PHP site. With over 8 million
page views a month across all of its sites, MarketPlayer.com finds PHP to have
absolutely no problems in handling the traftic, and they believe there is no traftic
frequency PHP couldn’t handle.

289

290 Chapter 8 Case Studies

Summary

As you can see, PHP has changed from its origins. Even though it has had a tremen-
dous impact on the Open Source community, in its early days PHP was still being
looked at as an amateur’ solution and mostly considered a new “toy.” Of course, the
“Pretty Hip People” (as PHP users sometimes title themselves) were fully convinced of
their own tool, yet had to admit that it sometimes simply didn’t stand up to the com-
petition. Throughout the development of version 3, PHP kept attacking the old giants
such as ASP, Cold Fusion, et al.—winning the battle more and more often.

In this chapter you have seen three examples in which PHP successfully kicked its
combatants out of the ring, proving its fitness for real-life, cutting-edge usage.
Considering the vastly growing amount of servers on which PHP is now running, and
taking a look at the huge step PHP made from version 3 to version 4, we believe that
PHP has become what it has been aiming at: a great tool for rapid development of
stable and fast scripting solutions.

References

"The survey can be found at www.netcraft.com/survey/.

1

Beyond PHP

9 Extending PHP 4.0: Hacking the Core of PHP

Extending PHP 4.0:
Hacking the Core of PHP

Those who know don’t talk.
Those who talk don’t know.

SOMETIMES, PHP “As 1S” SIMPLY ISN’T ENOUGH. Although these cases are rare for
the average user, professional applications will soon lead PHP to the edge of its
capabilities, in terms of either speed or functionality. New functionality cannot always
be implemented natively due to language restrictions and inconveniences that arise
when having to carry around a huge library of default code appended to every single
script, so another method needs to be found for overcoming these eventual lacks

in PHP.

As soon as this point is reached, it’s time to touch the heart of PHP and take a look
at its core, the C code that makes PHP go.

Note: This chapter only deals with the extension of PHP 4.0. Although a lot of the
information is relevant to PHP 3.0, none of the examples are designed to be
compatible with PHP 3.0. We believe that, if someone makes the effort to extend
PHP, PHP 4.0 will be installed anyway. (Recompiling old PHP 3.0 servers doesn’t
make sense, considering the benefits of the new PHP version.)

Also, at the time of this writing, quite a few things in PHP 4.0 were not
completely finished and working yet (one of the major things is the thread-safe
version of Zend).

Updates of this chapter can be found at www.phpwizard.net.

294 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Overview

“Extending PHP” is easier said than done. PHP has evolved to a full-fledged tool
consisting of a few megabytes of source code, and to hack a system like this quite a
few things have to be learned and considered. When structuring this chapter, we
finally decided on the “learn by doing” approach. This is not the most scientific and
professional approach, but the method that’s the most fun and gives the best end
results. In the following sections, you’ll learn quickly how to get the most basic
extensions to work almost instantly. After that, you’ll learn about Zend’s advanced API
functionality. The alternative would have been to try to impart the functionality,
design, tips, tricks, etc. as a whole, all at once, thus giving a complete look at the big
picture before doing anything practical. Although this is the “better” method, as no
dirty hacks have to be made, it can be very frustrating as well as energy- and time-
consuming, which is why we’ve decided on the direct approach.

Note that even though this chapter tries to impart as much knowledge as possible
about the inner workings of PHP, it’s impossible to really give a complete guide to
extending PHP that works 100% of the time in all cases. PHP is such a huge and
complex package that its inner workings can only be understood if you make yourself
familiar with it by practicing, so we encourage you to work with the source.

What Is Zend? and What Is PHP?

The name Zend refers to the language engine, PHP’s core. The term PHP refers to the
complete system as it appears from the outside. This might sound a bit confusing at
first, but it’s not that complicated (see Figure 9.1).To implement a Web script
interpreter, you need three parts:

s The interpreter part analyzes the input code, translates it, and executes it.

» The functionality part implements the functionality of the language (its
functions, etc.).

s The interface part talks to the Web server, etc.

Zend takes part 1 completely and a bit of part 2, PHP takes parts 2 and 3. Together
they form the complete PHP package. Zend itself really forms only the language core,
implementing PHP at its very basics with some predefined functions. PHP contains all
the modules that actually create the language’s outstanding capabilities.

What Is Zend? and What Is PHP? 295

Web Server Software

PHP4
Modules
Database MySQL | Oracle | ODBC | XML | IMAP | LDAP | Java | COM |More L|
dl...
A A

< »
>

A A Zend Engine
) ("
(FUNCTION MODULES INTERFAGE)
> WEB > Y
SERVER
Browser INTERFACE (EXECUTOR] l ggug%ﬁ] Web Server
< Disk
>~ J
EE | | S)

Figure 9.1 The internal structure of PHP.

The following sections discuss where PHP can be extended and how it’s done.

Extension Possibilities

As shown in Figure 9.1 above, PHP can be extended primarily at three points:

external modules, built-in modules, and the Zend engine. The following sections
discuss these options.

External Modules

External modules can be loaded at script runtime using the function d1().This
function loads a shared object from disk and makes its functionality available to the
script to which it’s being bound. After the script is terminated, the external module is
discarded from memory. This method has both advantages and disadvantages, as
described in the following table:

Advantages Disadvantages
External modules don’t The shared objects need to be loaded every
require recompiling of PHP. time a script is being executed (every hit),

which is very slow.

The size of PHP remains small by External additional files clutter up the disk.
“outsourcing” certain functionality.

Every script that wants to use an external
module’s functionality has to specifically include
a call to d1(), or the extension tag in php.ini
needs to be modified (which is not always a
suitable solution).

296 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

To sum up, external modules are great for third-party products, small additions to PHP
that are rarely used, or just for testing purposes. To develop additional functionality
quickly, external modules provide the best results. For frequent usage, larger
implementations, and complex code, the disadvantages outweigh the advantages.

Third parties might consider using the extension tag in php.ini to create
additional external modules to PHP. These external modules are completely detached
from the main package, which is a very handy feature in commercial environments.
Commercial distributors can simply ship disks or archives containing only their
additional modules, without the need to create fixed and solid PHP binaries that don’t
allow other modules to be bound to them.

Built-in Modules

Built-in modules are compiled directly into PHP and carried around with every PHP
process; their functionality is instantly available to every script that’s being run. Like
external modules, built-in modules have advantages and disadvantages, as described in
the following table:

Advantages Disadvantages

No need to load the module specifically; Changes to built-in modules require
the functionality is instantly available. recompiling of PHP.

No external files clutter up the disk; The PHP binary grows and
everything resides in the PHP binary. consumes more MmMemory.

Built-in modules are best when you have a solid library of functions that remains
relatively unchanged, requires better than poor-to-average performance, or is used
frequently by many scripts on your site. The need to recompile PHP is quickly
compensated by the benefit in speed and ease of use. However, built-in modules are
not ideal when rapid development of small additions is required.

The Zend Engine

Of course, extensions can also be implemented directly in the Zend engine. This
strategy 1s good if you need a change in the language behavior or require special
functions to be built directly into the language core. In general, however, modifications
to the Zend engine should be avoided. Changes here result in incompatibilities with
the rest of the world, and hardly anyone will ever adapt to specially patched Zend
engines. Modifications can’t be detached from the main PHP sources and are
overridden with the next update using the “official” source repositories. Therefore, this
method is generally considered bad practice and, due to its rarity, is not covered in this
book.

Source Layout 297

Source Layout

Before we start discussing code issues, you should familiarize yourself with the source
tree to be able to quickly navigate through PHPs files. This is a must-have ability to
implement and debug extensions.

After extracting the PHP archive, you’ll see a directory layout similar to that in

Figure 9.2.

=-_1 php-4
-1 libs
- build
- d
{:l et
&1 libs
-] pear
{:l reges
-] sapi
{:l soripts
{:l tezts
- TSRM
-] wind2
{:l “end

Figure 9.2 Main directory layout of the PHP source tree.

Prerequisites

Prior to working through the rest of this chapter, you should retrieve clean, unmodified source trees of
your favorite Web server. We're working with Apache (available at www.apache.org) and, of course,
with PHP (available at www.php.net—does it need to be said?).

Alternatively, you can use the provided source archives on the CD-ROM accompanying this book. All the
examples in this book work with the source archives on the CD-ROM; we can't guarantee this for every
version retrieved from the Net. However, as Open Source software develops extremely rapidly, chances
are that the versions on the CD-ROM are already outdated and don't have all the functionality you need.
If you can't get the official archives from the corresponding Web sites to work, experiment with the
CD-ROM archives and then try to go on from there.

Make sure that you can compile a working PHP environment by yourself! We won't go into this issue
here, however, as you should already have this most basic ability when studying this chapter.

298 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

The following table describes the contents of the major directories.

Directory Contents

php-4 Main PHP source files and main header files; here you’ll find all
of PHP’s API definitions, macros, etc. (important).

dl Repository for dynamic loadable modules; contains special header
file phpdl.h as well as required files for automating the make
process. This is a leftover from the previous PHP build system and
this directory is planned for removal from the source tree. Its
usage is deprecated.

ext Repository for dynamic and built-in modules; by default, these
are the “official” PHP modules that have been integrated into the
main source tree. In PHP 4.0, it’s possible to compile these
standard extensions as dynamic loadable modules (at least, those
that support it).

pear Directory for the PHP class repository. At the time of this writing,

this is still in the design phase, but it’s being tried to establish
something similar to CPAN for Perl here.

sapi Contains the code for the different server abstraction layers.

TSRM Location of the “Thread Safe Resource Manager” (TSRM) for
Zend and PHP.

Zend Location of Zends file; here you’ll find all of Zend’s API

definitions, macros, etc. (important).

Discussing all the files included in the PHP package is beyond the scope of this
chapter. However, you should take a close look at the following files:

= php.h,located in the main PHP directory. This file contains most of PHP’s
macro and API definitions.

= zend.h, located in the main Zend directory. This file contains most of Zend’s
macros and definitions.

= zend_API.h, also located in the Zend directory, which defines Zend’s API.

You should also follow some sub-inclusions from these files; for example, the ones
relating to the Zend executor, the PHP initialization file support, and such. After
reading these files, take the time to navigate around the package a little to see the
interdependencies of all files and modules—how they relate to each other and
especially how they make use of each other. This also helps you to adapt to the coding
style in which PHP is authored. To extend PHP, you should quickly adapt to this style.

Source Layout 299

Extension Conventions

Zend is built using certain conventions; to avoid breaking its standards, you should
follow the rules described in the following sections.

Macros

For almost every important task, Zend ships predefined macros that are extremely
handy. The tables and figures in the following sections describe most of the basic
functions, structures, and macros. The macro definitions can be found mainly in zend.h
and zend_API.h. We suggest that you take a close look at these files after having
studied this chapter. (Although you can go ahead and read them now, not everything
will make sense to you yet.)

Memory Management

Resource management is a crucial issue, especially in server software. One of the most
valuable resources is memory, and memory management should be handled with
extreme care. Memory management has been partially abstracted in Zend, and you
should stick to this abstraction for obvious reasons: Due to the abstraction, Zend gets
full control over all memory allocations. Zend is able to determine whether a block is
in use, automatically freeing unused blocks and blocks with lost references, and thus
prevent memory leaks. The functions to be used are described in the following table:

Function Description

emalloc() Serves as replacement for malloc().

efree() Serves as replacement for free().

estrdup() Serves as replacement for strdup().

estrndup() Serves as replacement for strndup (). Faster than estrdup() and

binary-safe. This is the recommended function to use if you know
the string length prior to duplicating it.

ecalloc() Serves as replacement for calloc().

erealloc() Serves as replacement for realloc().

emalloc(), estrdup(), estrndup(), ecalloc(), and erealloc() allocate internal
memory; efree() frees these previously allocated blocks. Memory handled by the e* ()
functions is considered local to the current process and is discarded as soon as the
script executed by this process is terminated.

300 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Warning

To allocate resident memory that survives termination of the current script, you
can use malloc() and free().This should only be done with extreme care,
however, and only in conjunction with demands of the Zend API; otherwise,
you risk memory leaks.

Zend also features a thread-safe resource manager to provide better native support for
multithreaded Web servers. This requires you to allocate local structures for all of your
global variables to allow concurrent threads to be run. Because the thread-safe mode
of Zend is not finished yet, we could not include coverage in this book.

Directory and File Functions

The following directory and file functions should be used in Zend modules (they
behave exactly like their C counterparts):

Zend Function Regular C Function

V_GETCWD () getecwd()

V_FOPEN() fopen()

V_CHDIR() chdir()

V_GETWD() getwd ()

V_CHDIR_FILE() Takes a file path as an argument and changes the current
working directory to that file’s directory.

V_STAT() stat()

V_LSTAT() 1stat()

String Handling

Strings are handled a bit differently by the Zend engine than other values such as
integers, Booleans, etc., which don’t require additional memory allocation for storing
their values. If you want to return a string from a function, introduce a new string
variable to the symbol table, or do something similar, you have to make sure that the
memory the string will be occupying has previously been allocated, using the
aforementioned e* () functions for allocation. (This might not make much sense to
you yet; just keep it somewhere in your head for now—we’ll get back to it shortly.)

PHP's Automatic Build System 301

Complex Types

Complex types such as arrays and objects require different treatment. Zend features a
single API for these types—they’re stored using hash tables.

Note: To reduce complexity in the following source examples, we’re only working
with simple types such as integers at first. A discussion about creating more advanced
types follows later in this chapter.

PHP’s Automatic Build System

PHP 4.0 features an automatic build system that’s very flexible. All modules reside in a
subdirectory of the ext directory. In addition to its own sources, each module consists
of an M4 file (for example, see www.gnu.org/manual/m4/html_mono/m4.html) for
configuration and a Makefile.in file, which is responsible for compilation (the results
of autoconf and automake; for example, see http://sourceware.cygnus.com/
autoconf/autoconf.html and http://sourceware.cygnus.com/automake/
automake.html).

Both files are generated automatically, along with .cvsignore, by a little shell script
named ext_skel that resides in the ext directory. As argument it takes the name of the
module that you want to create. The shell script then creates a directory of the same
name, along with the appropriate config.m4 and Makefile.in files.

Step by step, the process looks like this:

root@dev:/usr/local/src/php4/ext > ./ext_skel my_module
Creating directory
Creating basic files: config.m4 Makefile.in .cvsignore [done].

To use your new extension, you will have to execute the following steps:

$cd ..

$./buildconf

$./configure (your extension is automatically enabled)
$ vi ext/my_module/my module.c

$ make

Repeat the last two steps as often as necessary.

This instruction creates the aforementioned files. To include the new module in the
automatic configuration and build process, you have to run buildconf, which
regenerates the configure script by searching through the ext directory and including
all found config.m4 files.

Finally, running configure parses all configuration options and generates a makefile
based on those options and the options you specify in Makefile.in.

Listing 9.1 shows the previously generated Makefile.in:

302 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Listing 9.1 The default Makefile.in.

$Id: Extending_Zend.xml,v 1.22 2000/05/22 20:02:58 till Exp $

LTLIBRARY_NAME = libmy_module.la
LTLIBRARY_SOURCES my_module.c
LTLIBRARY_SHARED_NAME = my_module.la

include $(top_srcdir)/build/dynlib.mk

There’s not much to tell about this one: It contains the names of the input and output
files. You could also specify build instructions for other files if your module is built
from multiple source files.

The default config.m4 shown in Listing 9.2 is a bit more complex:

Listing 9.2 The default config.m4.

dnl $Id: Extending_Zend.xml,v 1.22 2000/05/22 20:02:58 till Exp $
dnl config.m4 for extension my_module
dnl don't forget to call PHP_EXTENSION(my module)

dnl If your extension references something external, use with:
PHP_ARG_WITH(my_module, for my_module support,

dnl Make sure that the comment is aligned:

[--with-my_module Include my _module support])

dnl Otherwise use enable:

PHP_ARG_ENABLE (my_module, whether to enable my_module support,
dnl Make sure that the comment is aligned:

[--enable-my_module Enable my module support])
if test "$PHP_MY_MODULE" != "no"; then

dnl Action..

PHP_EXTENSION(my_module, $ext_shared)

fi

If you’re unfamiliar with M4 files (now is certainly a good time to get familiar), this
might be a bit confusing at first; but it’s actually quite easy.
Note: Everything prefixed with dnl is treated as a comment and is not parsed.
The config.m4 file is responsible for parsing the command-line options passed to
configure at configuration time. This means that it has to check for required external
files and do similar configuration and setup tasks.

Creating Extensions

The default file creates two configuration directives in the configure script:
--with-my_module and --enable-my_module. Use the first option when referring
external files (such as the --with-apache directive that refers to the Apache directory).
Use the second option when the user simply has to decide whether to enable your
extension. Regardless of which option you use, you should uncomment the other,
unnecessary one; that is, if youre using - -enable-my_module, you should remove
support for --with-my_module, and vice versa.

By default, the config.m4 file created by ext_skel accepts both directives and
automatically enables your extension. Enabling the extension is done by using the
PHP_EXTENSION macro. To change the default behavior to include your module into the
PHP binary when desired by the user (by explicitly specifying - -enable-my_module or

--with-my_module), change the test for $PHP_MY_MODULE to == "yes":
if test "$PHP_MY_MODULE" == "yes"; then
dnl Action..
PHP_EXTENSION(my module, $ext_shared)
fi

This would require you to use --enable-my_module each time when reconfiguring
and recompiling PHP.

Note: Be sure to run buildconf every time you change config.m4!

We’ll go into more details on the M4 macros available to your configuration scripts
later in this chapter. For now, we’ll simply use the default files. The sample sources on
the CD-ROM all have working config.m4 files. To include them into the PHP build
process, simply copy the source directories to your PHP ext directory, run buildconf,
and then include the sample modules you want by using the appropriate
--enable-* directives with configure.

Creating Extensions

We’ll start with the creation of a very simple extension at first, which basically does
nothing more than implement a function that returns the integer it receives as
parameter. Listing 9.3 shows the source.

Listing 9.3 A simple extension.

/* include standard header */
#include "php.h"

/* declaration of functions to be exported */
ZEND_FUNCTION(first_module);

/* compiled function list so Zend knows what's in this module */
zend_function_entry firstmod_functions[] =
{

ZEND_FE(first_module, NULL)

{NULL, NULL, NULL}

continues

303

304 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Listing 9.3 Continued
h

/* compiled module information */
zend_module_entry firstmod_module_entry =

{
"First Module",
firstmod_functions,
NULL, NULL, NULL, NULL, NULL,
STANDARD_MODULE_PROPERTIES

b

/* implement standard "stub" routine to introduce ourselves to Zend */

#1if COMPILE_DL

DLEXPORT zend_module_entry *get module(void) { return(&firstmod_module_entry); }
#endif

/* implement function that is meant to be made available to PHP */
ZEND_FUNCTION(first_module)
{

zval **parameter;

if ((ZEND_NUM_ARGS() != 1) || (zend_get parameters_ex(1, ¶meter)
= != SUCCESS))
{

WRONG_PARAM_COUNT ;
}

convert_to_long ex(parameter);

RETURN_LONG((*parameter)->value.lval);

This code contains a complete PHP module. We’ll explain the source code in detail
shortly, but first we’d like to discuss the build process. (This will allow the impatient to
experiment before we dive into API discussions.)

Compiling Modules
There are basically three ways to compile modules:
= Use the provided “make” mechanism in the d1 directory.

= Use the provided “make” mechanism in the ext directory, which also allows
building of dynamic loadable modules.

= Compile the sources manually.

Compiling Modules 305

The second method should definitely be favored, since, as of PHP 4.0, this has been
standardized into a sophisticated build process. The fact that it is so sophisticated is also
its drawback, unfortunately—it’s hard to understand at first. We’ll provide a more
detailed introduction to this later in the chapter, but first let’s work with the default
files.

The make process contained in the d1 directory is a bit of a dirty hack, outdated
and planned for removal from the source tree. To be honest, it’s much simpler to use
this at first to build dynamic extensions, but because it doesn’t have the possibilities of
the ext directory and it’s scheduled for deletion anyway, usage of the d1 directory is
deprecated.

The third method is good for those who (for some reason) don’t have the full PHP
source tree available, don’t have access to all files, or just like to juggle with their
keyboard. These cases should be extremely rare, but for the sake of completeness we’ll
also describe this method.

Compiling Using Make

To compile the sample sources using the standard mechanism, copy all their
subdirectories to the ext directory of your PHP source tree. Then run buildconf,
which will create a new configure script containing appropriate options. By default,
all the sample sources are disabled, so you don’t have to fear breaking your build

rocess.

’ After you run buildconf, configure --help shows the following additional

modules:
--enable-array_experiments Enables array experiments
--enable-call_userland Enables userland module
--enable-cross_conversion Enables cross-conversion module
--enable-firstmodule Enables first module
--enable-infoprint Enables infoprint module
--enable-reference_test Enables reference test module
--enable-resource_test Enables resource test module
--enable-variable_creation Enables variable-creation module

The module shown earlier in Listing 9.3 can be enabled with
--enable-first_module or --enable-first_module=yes.

306 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Compiling Manually

To compile your modules manually, you need the following commands:

Action Command

Compiling cc -fpic -DCOMPILE_DL=1 -I/usr/local/include
-I. -I.. -I../Zend -c -0 <your_object_file>
<your_c_file>

Linking cc -shared -L/usr/local/lib -rdynamic -o
<your_module_file> <your_object_file(s)>

The command to compile the module simply instructs the compiler to generate
position-independent code (-fpic shouldn’t be omitted) and additionally defines the
constant COMPILE_DL to tell the module code that it’s compiled as a dynamically
loadable module (the test module above checks for this; we’ll discuss it shortly). After
these options, it specifies a number of standard include paths that should be used as the
minimal set to compile the source files.

Note: All include paths in the example are relative to the directory ext. If you’re
compiling from another directory, change the pathnames accordingly. Required items
are the PHP directory, the Zend directory, and (if necessary) the directory in which
your module resides.

The link command is also a plain vanilla command instructing linkage as a dynamic
module.

You can include optimization options in the compilation command, although these
have been omitted in this example (but some are included in the makefile template
described in an earlier section).

Note: Compiling and linking manually as a static module into the PHP binary
involves very long instructions and thus is not discussed here. (It’s not very efficient to
type all those commands.)

Using Extensions

Depending on the build process you selected, you should either end up with a new
PHP binary to be linked into your Web server (or run as CGI), or with an .so (shared
object) file. If you compiled the example file first_module.c as a shared object, your
result file should be first_module.so.To use it, you first have to copy it to a place
from which it’s accessible to PHP. For a simple test procedure, you can copy it to your
htdocs directory and try it with the source in Listing 9.4. If you compiled it into the
PHP binary, omit the call to d1(), as the module’s functionality is instantly available to
your scripts.

Using Extensions 307

Warning

For security reasons, you should not put your dynamic modules into publicly
accessible directories. Even though it can be done and it simplifies testing, you
should put them into a separate directory in production environments.

Listing 9.4 A test file for first_module.so.

<?php
//d1("first_module.so");

$param = 2;
$return = first_module($param);

print("We sent \"$param\" and got \"$return\"");

7>

Calling this PHP file in your Web browser should give you the output shown in
Figure 9.3.

Figure 9.3 Output of first_module.php.

If required, the dynamic loadable module is loaded by calling the d1() function. This
function looks for the specified shared object, loads it, and makes its functions available
to PHP. The module exports the function first_module (), which accepts a single
parameter, converts it to an integer, and returns the result of the conversion.

If you’ve gotten this far, congratulations! You just built your first extension to PHP.

308 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Troubleshooting

Actually, not much troubleshooting can be done when compiling static or dynamic
modules. The only problem that could arise is that the compiler will complain about
missing definitions or something similar. In this case, make sure that all header files are
available and that you specified their path correctly in the compilation command. To
be sure that everything is located correctly, extract a clean PHP source tree and use
the automatic build in the ext directory with the fresh files from the CD-ROM,; this
will guarantee a safe compilation environment. If this fails, try manual compilation.

PHP might also complain about missing functions in your module. (This shouldn’t
happen with the sample sources if you didn’t modify them.) If the names of external
functions you’re trying to access from your module are misspelled, they’ll remain as
“unlinked symbols” in the symbol table. During dynamic loading and linkage by PHP,
they won'’t resolve because of the typing errors—there are no corresponding symbols
in the main binary. Look for incorrect declarations in your module file or incorrectly
written external references. Note that this problem is specific to dynamic loadable
modules; it doesn’t occur with static modules. Errors in static modules show up at
compile time.

Source Discussion

Now that you’ve got a safe build environment and you’re able to include the modules
into PHP files, it’s time to discuss how everything works.

Module Structure
All PHP modules follow a common structure:
= Header file inclusions (to include all required macros, API definitions, etc.)

= C declaration of exported functions (required to declare the Zend function

block)
= Declaration of the Zend function block
= Declaration of the Zend module block
= Implementation of get_module()

= Implementation of all exported functions

Header File Inclusions

The only header file you really have to include for your modules is php.h, located in
the PHP directory. This file makes all macros and API definitions required to build
new modules available to your code.

Source Discussion

Tip: It’s good practice to create a separate header file for your module that contains
module-specific definitions. This header file should contain all the forward definitions
for exported functions and also include php.h.

Declaring Exported Functions

To declare functions that are to be exported (i.e., made available to PHP as new native
functions), Zend provides a set of macros. A sample declaration looks like this:

ZEND_FUNCTION(my_function);

ZEND_FUNCTION declares a new C function that complies with Zend’s internal API. This
means that the function is of type void and accepts INTERNAL_FUNCTION_PARAMETERS
(another macro) as parameters. Additionally, it prefixes the function name with zend_if.
The immediately expanded version of the above definition would look like this:

void zend_if my function(INTERNAL FUNCTION_ PARAMETERS);

Expanding INTERNAL_FUNCTION_PARAMETERS results in the following:

void zend_if_my_function(int ht, zval *return_value,
=zval *this_ptr, int return_value_used,
=zend_executor_globals *executor_globals);
Since the interpreter and executor core have been separated from the main PHP
package, a second API defining macros and function sets has evolved: the Zend APIL. As
the Zend API now handles quite a few of the responsibilities that previously belonged
to PHP, a lot of PHP functions have been reduced to macros aliasing to calls into the
Zend API. The recommended practice is to use the Zend API wherever possible, as
the old API is only preserved for compatibility reasons. For example, the types zval
and pval are identical. zval is Zend’s definition; pval is PHP’ definition (actually, pval
is an alias for zval now). As the macro INTERNAL_FUNCTION_PARAMETERS is a Zend
macro, the above declaration contains zval. When writing code, you should always use
zval to conform to the new Zend API.
The parameter list of this declaration is very important; you should keep these
parameters in mind (see Table 9.1 for descriptions).

Table 9.1 Zend’s Parameters to Functions Called from PHP

Parameter Description

ht The number of arguments passed to the Zend function.
You should not touch this directly, but instead use
ZEND_NUM_ARGS() to obtain the value.

return_value This variable is used to pass any return values of your
function back to PHP. Access to this variable is best
done using the predefined macros. For a description of
these see below.

continues

309

310 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Table 9.1 Continued

this_ptr

return_value_used

executor_globals

Using this variable, you can gain access to the object in
which your function is contained, if it’s used within an
object. Use the function getThis() to obtain this
pointer.

This flag indicates whether an eventual return value
from this function will actually be used by the calling
script. 0 indicates that the return value is not used; 1
indicates that the caller expects a return value.
Evaluation of this flag can be done to verify correct
usage of the function as well as speed optimizations in
case returning a value requires expensive operations (for
an example, see how array.c makes use of this).

This variable points to global settings of the Zend
engine. You’'ll find this useful when creating new
variables, for example (more about this later). The
executor globals can also be introduced to your
function by using the macro ELS_FETCH().

Declaration of the Zend Function Block

Now that you have declared the functions to be exported, you also have to introduce

them to Zend. Introducing the list of functions is done by using an array of

zend_function_entry. This array consecutively contains all functions that are to be

made available externally, with the function’s name as it should appear in PHP and its

name as defined in the C source. Internally, zend_function_entry is defined as shown

in Listing 9.5.

Listing 9.5 Internal declaration of zend_function_entry.

typedef struct _zend function_entry {

char *fname;

void (*handler) (INTERNAL_FUNCTION_PARAMETERS);
unsigned char *func_arg_types;

} zend_function_entry;

Source Discussion

The following table describes the entries.

Entry Description

fname Denotes the function name as seen in PHP (for
example, fopen, mysql_connect, or, in our cxamplc,
first_module).

handler Pointer to the C function responsible for handling calls
to this function. For example, see the standard macro
INTERNAL_FUNCTION_PARAMETERS discussed earlier.

func_arg_types Allows you to mark certain parameters so that they’re
forced to be passed by reference.You usually should set
this to NULL.

In the example above, the declaration looks like this:

zend_function_entry firstmod_functions[] =

{ ZEND_FE(first_module, NULL)
{NULL, NULL, NULL}

5
You can see that the last entry in the list always has to be {NULL, NULL, NULL}.This
marker has to be set for Zend to know when the end of the list of exported functions
is reached.

Note:You cannot use the predefined macros for the end marker, as these would try
to refer to a function named “NULL”!

The macro ZEND_FE simply expands to a structure entry in zend_function_entry.
Note that these macros introduce a special naming scheme to your functions—your C
functions will be prefixed with zend_if_, meaning that ZEND_FE(first_module) will
refer to a C function zend_if_first_module (). If you want to mix macro usage with
hand-coded entries (not a good practice), keep this in mind.

Tip: Compilation errors that refer to functions named zend_if_*() relate to
functions defined with ZEND_FE.

Table 9.2 shows a list of all the macros you can use to define functions.

Table 9.2 Macros for Defining Functions

Macro Name Description

ZEND_FE (name, arg_types) Defines a function entry of the name name in
zend_function_entry. Requires a corresponding C
function. arg_types needs to be set to NULL. This
function uses automatic C function name generation by
prefixing the PHP function name with zend_if_. For
example, ZEND_FE("first_module", NULL) introduces
a function first_module() to PHP and links it to the
C function zend_if_first_module(). Use in
conjunction with ZEND_FUNCTION.

continues

311

312 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Table 9.2 Continued

Macro Name
ZEND_NAMED_FE
(php_name, name, arg_types)

ZEND_FALIAS
(name, alias, arg_types)

PHP_FE (name, arg_types)

PHP_NAMED_FE (runtime_name,
name, arg_types)

Description

Defines a function that will be available to PHP by the
name php_name and links it to the corresponding C
function name. arg_types needs to be set to NULL. Use
this function if you don’t want the automatic name
prefixing introduced by ZEND_FE. Use in conjunction
with ZEND_NAMED_FUNCTION.

Defines an alias named alias for name. arg_types
needs to be set to NULL. Doesn’t require a correspon-
ding C function; refers to the alias target instead.

Old PHP API equivalent of ZEND_FE.
Old PHP API equivalent of ZEND_NAMED_FE.

Note: You can’t use ZEND_FE in conjunction with PHP_FUNCTION, or PHP_FE in
conjunction with ZEND_FUNCTION. However, it’s perfectly legal to mix ZEND_FE and
ZEND_FUNCTION with PHP_FE and PHP_FUNCTION when staying with the same macro set
for each function to be declared. But mixing is not recommended; instead, you’re
advised to use the ZEND_* macros only.

Declaration of the Zend Module Block

This block is stored in the structure zend_module_entry and contains all necessary
information to describe the contents of this module to Zend.You can see the internal
definition of this module in Listing 9.6.

Listing 9.6 Internal declaration of zend_module_entry.

typedef struct _zend_module_entry zend_module_entry;

struct _zend_module_entry {
char *name;

zend_function_entry *functions;

int

int
int

(*module_startup_func) (INIT_FUNC_ARGS);

int (*module_shutdown_func) (SHUTDOWN_FUNC_ARGS) ;
(*request_startup_func) (INIT_FUNC_ARGS) ;
(*request_shutdown_func) (SHUTDOWN_FUNC_ARGS) ;

void (*info_func) (ZEND_MODULE_INFO_FUNC_ARGS) ;
int (*global_startup_func) (void);
int (*global_shutdown_func) (void);

[Rest of the structure is not interesting here]

b

Source Discussion

The following table describes the entries.

Entry

name

functions

module_startup_func

module_shutdown_func

request_startup_func

request_shutdown_func

Description

Contains the module name (for example, "File
functions", "Socket functions", "Crypt", etc.). This
name will show up in phpinfo(),in the section
“Additional Modules.”

Points to the Zend function block, discussed in the
preceding section.

This function is called once upon module initialization
and can be used to do one-time initialization steps
(such as initial memory allocation, etc.) To indicate a
failure during initialization, return FAILURE; otherwise,
SUCCESS. To mark this field as unused, use NULL. To
declare a function, use the macro ZEND_MINIT.

This function is called once upon module shutdown
and can be used to do one-time deinitialization steps
(such as memory deallocation). This is the counterpart
to module_startup_func().To indicate a failure during
deinitialization, return FAILURE; otherwise, SUCCESS. To
mark this field as unused, use NULL. To declare a
function, use the macro ZEND_MSHUTDOWN.

This function is called once upon every page request
and can be used to do one-time initialization steps that
are required to process a request. To indicate a failure
here, return FAILURE; otherwise, SUCCESS.

Note: As dynamic loadable modules are loaded only on
page requests, the request startup function is called right
after the module startup function (both initialization
events happen at the same time). To mark this field as
unused, use NULL. To declare a function, use the macro
ZEND_RINIT.

This function is called once after every page request and
works as counterpart to request_startup_func().To
indicate a failure here, return FAILURE; otherwise,
SUCCESS.

Note: As dynamic loadable modules are loaded only on
page requests, the request shutdown function is
immediately followed by a call to the module shutdown
handler (both deinitialization events happen at the same
time). To mark this field as unused, use NULL. To declare
a function, use the macro ZEND_RSHUTDOWN.

continues

313

314 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Entry Description

info_func When phpinfo() is called in a script, Zend cycles
through all loaded modules and calls this function.
Every module then has the chance to print its own
“footprint” into the output page. Generally this is used
to dump environmental or statistical information. To
mark this field as unused, use NULL. To declare a
function, use the macro ZEND_MINFO.

global_startup_func The global startup functions are rarely used.You should
usually skip through the rest of this structure by placing
the macro STANDARD_MODULE_PROPERTIES. To mark this
field as unused, use NULL. To declare a function, use the
macro ZEND_GINIT.

global_shutdown_func To mark this field as unused, use NULL. To declare a
function, use the macro ZEND_GSHUTDOWN.

Remaining structure elements These are used internally and can be prefilled by using
the macro STANDARD_MODULE_PROPERTIES_EX.You
should not assign any values to them. Use
STANDARD_MODULE_PROPERTIES_EX only if you use
global startup and shutdown functions; otherwise, use
STANDARD_MODULE_PROPERTIES directly.

In our example, this structure is implemented as follows:

zend_module_entry firstmod_module_entry =

{
"First Module",
firstmod_functions,
NULL, NULL, NULL, NULL, NULL,
STANDARD_MODULE_PROPERTIES

b

This is basically the easiest and most minimal set of values you could ever use. The
module name is set to First Module, then the function list is referenced, after which
all startup and shutdown functions are marked as being unused.

For reference purposes, you can find a list of the macros involved in declared
startup and shutdown functions in Table 9.3. These are not used in our basic example
yet, but will be demonstrated later on.You should make use of these macros to declare
your startup and shutdown functions, as these require special arguments to be passed
(INIT_FUNC_ARGS and SHUTDOWN_FUNC_ARGS), which are automatically included into the
function declaration when using the predefined macros. If you declare your functions
manually and the PHP developers decide that a change in the argument list is
necessary, you’ll have to change your module sources to remain compatible.

Source Discussion

Table 9.3 Macros to Declare Startup and Shutdown Functions

Macro

ZEND_MINIT (module)

ZEND_MSHUTDOWN (module)

ZEND_RINIT (module)

ZEND_RSHUTDOWN (module)

ZEND_GINIT (module)

ZEND_GSHUTDOWN (module)

ZEND_MINFO (module)

Description

Declares a function for module startup. The generated
name will be zend_minit_<module> (for example,
zend_minit_first_module). Use in conjunction with
ZEND_MINIT_FUNCTION.

Declares a function for module shutdown. The
generated name will be zend_mshutdown_<module> (for
example, zend_mshutdown_first_module). Use in
conjunction with ZEND_MSHUTDOWN_FUNCTION.

Declares a function for request startup. The generated
name will be zend_rinit_<module> (for example,
zend_rinit_first_module). Use in conjunction with
ZEND_RINIT_FUNCTION

Declares a function for request shutdown. The
generated name will be zend_rshutdown_<module> (for
example, zend_rshutdown_first_module). Use in
conjunction with ZEND_RSHUTDOWN_FUNCTION.

Declares a function for global startup. The generated
name will be zend_ginit_<module> (for example,
zend_ginit_first_module). Use in conjunction with
ZEND_GINIT_FUNCTION

Declares a function for global shutdown. The generated
name will be zend_gshutdown_<module> (for example,
zend_gshutdown_first_module). Use in conjunction
with ZEND_GSHUTDOWN_FUNCTION.

Declares a function for printing module information,
used when phpinfo() is called. The generated name
will be zend_info_<module> (for example,
zend_info_first_module). Use in conjunction with
ZEND_MINFO_FUNCTION.

Implementation of get_module()

This function is special to all dynamic loadable modules. Take a look at the

implementation first:

#if COMPILE_DL

DLEXPORT zend_module_entry *get_module(void) { return(&firstmod_module_entry); }

#endif

315

316 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

The function implementation is surrounded by a conditional compilation statement.
This is needed since the function get_module() is only required if your module is
built as a dynamic extension. By specifying a definition of COMPILE_DL in the compiler
command (see above for a discussion of the compilation instructions required to build
a dynamic extension), you can instruct your module whether you intend to build
it as a dynamic extension or as a built-in module. If you want a built-in module, the
implementation of get_module() is simply left out.

get_module() is called by Zend at load time of the module.You can think of it as
being invoked by the d1() call in your script. Its purpose is to pass the module
information block back to Zend in order to inform the engine about the module
contents.

If you don’t implement a get_module() function in your dynamic loadable module,
Zend will compliment you with an error message when trying to access it.

Implementation of All Exported Functions

Implementing the exported functions is the final step. The example function in
first_module looks like this:

ZEND_FUNCTION(firstmodule)
{

zval **parameter;

if ((ZEND_NUM_ARGS() != 1) || (zend_get parameters_ex(1, ¶meter)
== SUCCESS))

{
WRONG_PARAM_COUNT;

}
convert_to_long_ex(parameter);

RETURN_LONG((*parameter)->value.lval);
}
The function declaration is done using ZEND_FUNCTION, which corresponds to ZEND_FE
in the function entry table (discussed earlier).
After the declaration, code for checking and retrieving the function’s arguments,
argument conversion, and return value generation follows (more on this later).

Summary

That’s it, basically—there’s nothing more to implementing PHP modules. Built-in
modules are structured similarly to dynamic modules, so, equipped with the
information presented in the previous sections, you’ll be able to fight the odds when
encountering PHP module source files.

Accepting Arguments

Now, in the following sections, read on about how to make use of PHP’s internals
to build powerful extensions.

Accepting Arguments

One of the most important issues for language extensions is accepting and dealing
with data passed via arguments. Most extensions are built to deal with specific input
data (or require parameters to perform their specific actions), and function arguments
are the only real way to exchange data between the PHP level and the C level. Of
course, there’s also the possibility of exchanging data using predefined global values
(which is also discussed later), but this should be avoided by all means, as it’s extremely
bad practice. For details, refer to Chapter 1, “Development Concepts.”

PHP doesn’t make use of any formal function declarations; this is why call syntax is
always completely dynamic and never checked for errors. Checking for correct call
syntax is left to the user code. For example, it’s possible to call a function using only
one argument at one time and four arguments the next time—both invocations are
syntactically absolutely correct.

Determining the Number of Arguments

Since PHP doesn’t have formal function definitions with support for call syntax
checking, and since PHP features variable arguments, sometimes you need to
find out with how many arguments your function has been called.You can use the
ZEND_NUM_ARGS macro in this case. In previous versions of PHP, this macro retrieved
the number of arguments with which the function has been called based on the
function’s hash table entry, ht, which is passed in the INTERNAL_FUNCTION_PARAMETERS
list. As ht itself now contains the number of arguments that have been passed to the
function, ZEND_NUM_ARGS has been stripped down to a dummy macro (see its definition
in zend_API.h). But it’s still good practice to use it, to remain compatible with future
changes in the call interface. Note: The old PHP equivalent of this macro is ARG_COUNT.

The following code checks for the correct number of arguments:

if (ZEND_NUM_ARGS() != 2)

WRONG_PARAMETER_COUNT ;

If the function is not called with two arguments, it exits with an error message. The
code snippet above makes use of the tool macro WRONG_PARAMETER_COUNT, which can
be used to generate a standard error message (see Figure 9.4).

317

318 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

< Netscape

File Edit “ew Go Communicator Help

Warning: Wrong parameter count for firstmodule() in
‘homesswwhtdocs/firstmod.php on line 5

Figure 9.4 WRONG_PARAMETER_COUNT in action.

This macro prints a default error message and then returns to the caller. Its definition
can also be found in zend_API.h and looks like this:

ZEND_API void wrong_param_count(void);

#define WRONG_PARAM_COUNT { wrong_param_count(); return; }

As you can see, it calls an internal function named wrong_param_count () that’s
responsible for printing the warning. For details on generating customized error
messages, see the later section “Printing Information.”

Retrieving Arguments

After having checked the number of arguments, you need to get access to the
arguments themselves. This is done with the help of zend_get_parameters_ex():

zval **parameter;

if(zend_get_parameters_ex(1, ¶meter) != SUCCESS)
WRONG_PARAMETER_COUNT ;

All arguments are stored in a zval container, which needs to be pointed to fwice. The
snippet above tries to retrieve one argument and make it available to us via the
parameter pointer.

zend_get_parameters_ex () accepts at least two arguments. The first argument is the
number of arguments to retrieve, which should match the number of arguments with
which the function has been called; this is why it’s important to check for correct call
syntax. The second argument (and all following arguments) are pointers to pointers
to pointers to zvals. (Confusing, isn’t it?) All these pointers are required because
Zend works internally with **zval; to adjust a local **zval in our function,
zend_get_parameters_ex() requires a pointer to it.

Accepting Arguments 319

The return value of zend_get_parameters_ex() can either be SUCCESS or FAILURE,
indicating (unsurprisingly) success or failure of the argument processing. A failure is
most likely related to an incorrect number of arguments being specified, in which case
you should exit with WRONG_PARAMETER_COUNT.

To retrieve more than one argument, you can use a similar snippet:

zval **parami1, **param2, **param3, **param4;

if(zend_get_parameters_ex(4, ¶ml, ¶m2, ¶m3, ¶m4) != SUCCESS)
WRONG_PARAMETER_COUNT ;
zend_get_parameters_ex() only checks whether you're trying to retrieve too many
parameters. If the function is called with five arguments, but youre only retrieving
three of them with zend_get_parameters_ex(), you won’t get an error but will get
the first three parameters instead. Subsequent calls of zend_get_parameters_ex() won’t
retrieve the remaining arguments, but will get the same arguments again.

Dealing with a Variable Number of Arguments/Optional
Parameters

If your function is meant to accept a variable number of arguments, the snippets just
described are sometimes suboptimal solutions. You have to create a line calling
zend_get_parameters_ex () for every possible number of arguments, which is often
unsatisfying.

For this case, you can use the function zend_get_parameters_array_ex(), which
accepts the number of parameters to retrieve and an array in which to store them:

zval **parameter_array[4];

/* get the number of arguments */
argument_count = ZEND_NUM_ARGS();

/* see if it satisfies our minimal request (2 arguments) */

/* and our maximal acceptance (4 arguments) */

if (argument_count < 2 || argument_count > 5)
WRONG_PARAMETER_COUNT ;

/* argument count is correct, now retrieve arguments */
if(zend_get_parameters_array_ex(argument_count, parameter_array) != SUCCESS)
WRONG_PARAMETER_COUNT ;

First, the number of arguments is checked to make sure that it’s in the accepted range.
After that, zend_get_parameters_array_ex() is used to fill parameter_array with valid
pointers to the argument values.

A very clever implementation of this can be found in the code handling PHP’s
fsockopen() located in ext/standard/fsock.c, as shown in Listing 9.7. Don’t worry if’
you don’t know all the functions used in this source yet; we’ll get to them shortly.

320 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Listing 9.7 PHP’s implementation of variable arguments in fsockopen().

pval **args[5];

int *sock=emalloc(sizeof(int));
int *sockp;

int arg_count=ARG_COUNT (ht);
int socketd = -1;

unsigned char udp = 0;

struct timeval timeout = { 60, 0 };
unsigned short portno;

unsigned long conv;

char *key = NULL;

FLS_FETCH();

if (arg_count > 5 || arg_count < 2 |,
=zend_get_parameters_array_ex(arg_count,args)==FAILURE) {
CLOSE_SOCK(1);
WRONG_PARAM_COUNT
}

switch(arg_count) {
case 5:
convert_to_double ex(args[4]);
conv = (unsigned long) ((*args[4])->value.dval * 1000000.0);
timeout.tv_sec = conv / 1000000;
timeout.tv_usec = conv % 1000000;
/* fall-through */
case 4:
if (!ParameterPassedByReference(ht,4)) {
php_error (E_WARNING, "error string argument to fsockopen not passed by
=reference");
}
pval_copy_constructor(*args[3]);
(*args[3])->value.str.val = empty_string;
(*args[3]) ->value.str.len = 0;
(*args[3])->type = IS_STRING;
/* fall-through */
case 3:
if (!ParameterPassedByReference(ht,3)) {
php_error (E_WARNING, "error argument to fsockopen not passed by
=reference");

}
(*args[2])->type = IS_LONG;
(*args[2])->value.lval = 0;
break;

}
convert_to_string_ex(args[0]);
convert_to_long_ex(args[1]);

portno = (unsigned short) (*args[1])->value.lval;

key = emalloc((*args[@])->value.str.len + 10);

Accepting Arguments 321

fsockopen() accepts two, three, four, or five parameters. After the obligatory variable
declarations, the function checks for the correct range of arguments. Then it uses a
fall-through mechanism in a switch() statement to deal with all arguments. The
switch() statement starts with the maximum number of arguments being passed (five).
After that, it automatically processes the case of four arguments being passed, then
three, by omitting the otherwise obligatory break keyword in all stages. After having
processed the last case, it exits the switch() statement and does the minimal argument
processing needed if the function is invoked with only two arguments.

This multiple-stage type of processing, similar to a stairway, allows convenient
processing of a variable number of arguments.

Accessing Arguments

To access arguments, it’s necessary for each argument to have a clearly defined type.
Again, PHPs extremely dynamic nature introduces some quirks. Because PHP never
does any kind of type checking, it’s possible for a caller to pass any kind of data to
your functions, whether you want it or not. If you expect an integer, for example, the
caller might pass an array, and vice versa—PHP simply won'’t notice.

To work around this, you have to use a set of API functions to force a type
conversion on every argument that’s being passed (see Table 9.4).

Note: All conversion functions expect a **zval as parameter.

Table 9.4 Argument Conversion Functions

Function Description

convert_to_boolean_ex(value) Forces conversion to a Boolean type. Boolean values
remain untouched. Longs, doubles, and strings
containing 0 as well as NULL values will result in
Boolean @ (FALSE). Arrays and objects are converted
based on the number of entries or properties,
respectively, that they have. Empty arrays and objects are
converted to FALSE; otherwise, to TRUE. All other
values result in a Boolean 1 (TRUE).

convert_to_long_ex(value) Forces conversion to a long, the default integer type.
NULL values, Booleans, resources, and of course longs
remain untouched. Doubles are truncated. Strings
containing an integer are converted to their
corresponding numeric representation, otherwise
resulting in @. Arrays and objects are converted to @ if
empty, 1 otherwise.

continues

322 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Table 9.4 Continued

Function

convert_to_double_ex(value)

convert_to_string_ex(value)

convert_to_array_ex(value)

convert_to_object_ex(value)

convert_to_null_ex(value)

Description

Forces conversion to a double, the default floating-point
type. NULL values, Booleans, resources, longs, and of
course doubles remain untouched. Strings containing a
number are converted to their corresponding numeric
representation, otherwise resulting in 0.0. Arrays and
objects are converted to 0.0 if empty, 1.0 otherwise.

Forces conversion to a string. Strings remain
untouched. NULL values are converted to an empty
string. Booleans containing TRUE are converted to "1",
otherwise resulting in an empty string. Longs and
doubles are converted to their corresponding string
representation. Arrays are converted to the string
"Array" and objects to the string "Object".

Forces conversion to an array. Arrays remain untouched.
Objects are converted to an array by assigning all their
properties to the array table. All property names are used
as keys, property contents as values. NULL values are
converted to an empty array. All other values are
converted to an array that contains the specific source
value in the element with the key 0.

Forces conversion to an object. Objects remain
untouched. NULL values are converted to an empty
object. Arrays are converted to objects by introducing
their keys as properties into the objects and their values
as corresponding property contents in the object. All
other types result in an object with the property
scalar, having the corresponding source value as
content.

Forces the type to become a NULL value, meaning

empty.

Note: You can find a demonstration of the behavior in cross_conversion.php on the
accompanying CD-ROM. Figure 9.5 shows the output.

etscape

Accepting Arguments 323

File Edit Yiew Go Communicator Help

Running conversion for type string

Original contents: hello

Condition: Conwverting to boolean

Wariable contents: '1'
isset() = TRITE
empty() = FALEE
gettype() = boolean

Condition: Conwerting to long

Wariable contents: "0
isset() = TRITE
empty() = TETE
gettype() = integer

Condition: Converting to double

Wariable contents: '0'
1zzet) = TRTTE
E =¢D‘=| |Document: Done

Sl % oP Ea 2 | 4

|

Figure 9.5 Cross-conversion behavior of PHP.

Using these functions on your arguments will ensure type safety for all data that’s
passed to you. If the supplied type doesn’t match the required type, PHP forces
dummy contents on the resulting value (empty strings, arrays, or objects, @ for numeric

values, FALSE for Booleans) to ensure a defined state.

Following is a quote from the sample module discussed previously, which makes

use of the conversion functions:

zval **parameter;

if ((ZEND_NUM_ARGS() != 1) || (zend_get parameters_ex(1, ¶meter) != SUCCESS))

{
WRONG_PARAM_COUNT;
}

convert_to_long_ex(parameter);

RETURN_LONG((*parameter)->value.lval);

324 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

After retrieving the parameter pointer, the parameter value is converted to a long (an
integer), which also forms the return value of this function. Understanding access to
the contents of the value requires a short discussion of the zval type, whose definition
is shown in Listing 9.8.

Listing 9.8 PHP/Zend zval type definition.

typedef pval zval;
typedef struct _zval_struct zval;

typedef union _zvalue value {
long lval; /* long value */
double dval; /* double value */
struct {
char *val;
int len;
} stry
HashTable *ht; /* hash table value */
struct {
zend_class_entry *ce;
HashTable *properties;
} obj;
} zvalue_value;

struct _zval_struct {
/* Variable information */
zvalue_value value; /* value */
unsigned char type; /* active type */
unsigned char is_ref;
short refcount;

b

Actually, pval (defined in php.h) is only an alias of zval (defined in zend.h), which in
turn refers to _zval_struct.This is a most interesting structure. _zval_struct is the
“master” structure, containing the value structure, type, and reference information. The
substructure zvalue_value is a union that contains the variable’s contents. Depending
on the variable’s type, you’ll have to access different members of this union. For a
description of both structures, see Tables 9.5, 9.6, and 9.7.

Table 9.5 Zend zval Structure

Entry Description

value Union containing this variable’s contents. See Table 9.6
for a description.

type Contains this variable’s type. For a list of available types,
see Table 9.7.

Entry

is_ref

refcount

Accepting Arguments

Description

® means that this variable is not a reference; 1 means
that this variable is a reference to another variable.

The number of references that exist for this variable.
For every new reference to the value stored in this
variable, this counter is increased by 1. For every lost
reference, this counter is decreased by 1. When the
reference counter reaches 0, no references exist to this
value anymore, which causes automatic freeing of the
value.

Table 9.6 Zend zvalue_value Structure

Entry
lval

dval

str

ht

obj

Description

Use this property if the variable is of the type IS_LONG,
IS_BOOLEAN, or IS_RESOURCE.

Use this property if the variable is of the type
IS_DOUBLE

This structure can be used to access variables of the
type IS_STRING. The member len contains the string
length; the member val points to the string itself. Zend
uses C strings; thus, the string length contains a trailing
0x00.

This entry points to the variable’s hash table entry if the
variable is an array.

Use this property if the variable is of the type
IS_OBJECT

Table 9.7 Zend Variable Type Constants

Constant
IS_NULL
IS_LONG
IS_DOUBLE
IS_STRING
IS_ARRAY
IS_OBJECT
IS_BOOL
IS_RESOURCE

IS_CONSTANT

Description

Denotes a NULL (empty) value.
A long (integer) value.

A double (floating point) value.
A string.

Denotes an array.

An object.

A Boolean value.

A resource (for a discussion of resources, see the
appropriate section below).

A constant (defined) value.

325

326 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

To access a long you access zval.value.lval, to access a double you use
zval.value.dval, and so on. Because all values are stored in a union, trying to access
data with incorrect union members results in meaningless output.

Accessing arrays and objects is a bit more complicated and is discussed later.

Dealing with Arguments Passed by Reference

If your function accepts arguments passed by reference that you intend to modify, you
need to take some precautions.

What we didn’t say yet is that under the circumstances presented so far, you don’t
have write access to any zval containers designating function parameters that have been
passed to you. Of course, you can change any zval containers that you created within
your function, but you mustn’t change any zvals that refer to Zend-internal data!

We’ve only discussed the so-called *_ex () API so far.You may have noticed that the
API functions we've used are called zend_get_parameters_ex() instead of
zend_get_parameters(), convert_to_long_ex() instead of convert_to_long(),etc.
The *_ex() functions form the so-called new “extended” Zend API. They give a
minor speed increase over the old API, but as a tradeoff are only meant for providing
read-only access.

Because Zend works internally with references, different variables may reference
the same value. Write access to a zval container requires this container to contain an
isolated value, meaning a value that’s not referenced by any other containers. If a zval
container were referenced by other containers and you changed the referenced zval,
you would automatically change the contents of the other containers referencing this
zval (because they’d simply point to the changed value and thus change their own
value as well).

zend_get_parameters_ex () doesn’t care about this situation, but simply returns a
pointer to the desired zval containers, whether they consist of references or not. Its
corresponding function in the traditional API, zend_get_parameters (), immediately
checks for referenced values. If it finds a reference,it creates a new, isolated zval
container, copies the referenced data into this newly allocated space, and then returns a
pointer to the new, isolated value.

This action is called zval separation (or pval separation). Because the *_ex() API
doesn’t perform zval separation, it’s considerably faster, while at the same time
disabling write access.

Accepting Arguments

To change parameters, however, write access is required. Zend deals with this
situation in a special way: Whenever a parameter to a function is passed by reference, it
performs automatic zval separation. This means that whenever you're calling a
function like this in PHP, Zend will automatically ensure that $parameter is being
passed as an isolated value, rendering it to a write-safe state:

my_function(&$parameter);

But this is not the case with regular parameters! All other parameters that are not
passed by reference are in a read-only state.

This requires you to make sure that you're really working with a reference—
otherwise you might produce unwanted results. To check for a parameter being passed
by reference, you can use the function ParameterPassedByReference (). This function
accepts two parameters. The first is the function’s ht value, and the second is the
argument number that you want to test, counted from left to right, as shown in Listing
9.9 and Figure 9.6 (see the CD-ROM for the full source).

Listing 9.9 Testing for referenced parameter passing.

zval **parameter;

if ((ZEND_NUM_ARGS() != 1) || (zend_get_parameters_ex(1, ¶meter) != SUCCESS))
{

WRONG_PARAM_COUNT;
}

/* check for parameter being passed by reference */

if (!ParameterPassedByReference(ht, 1))

{
zend_error(E_WARNING, "Parameter wasn't passed by reference");
RETURN_NULL() ;

}

/* make changes to the parameter */
(*parameter)->type = IS_LONG;
(*parameter)->value.lval = 10;

327

328 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Metscape

File Edit “iew Go Communicator Help

Trying without reference operator
Before

Tvpe: string
Content: hello

Warning: Parameter wasn't passed by reference in /home/swwhtdocs/reference_test.php
on line 18

After

Type: string
Content: hello

Trying with reference operator
Before

Tvpe: string
Content: hello

After

Type: mteger
Content: 10

’? == | |Document: Dane

G5 AP Ex A

Figure 9.6 Testing for referenced parameter passing.

Assuring Write Safety for Other Parameters

You might run into a situation in which you need write access to a parameter that’s
retrieved with zend_get_parameters_ex() but not passed by reference. For this case,
you can use the macro SEPARATE_ZVAL, which does a zval separation on the provided
container. The newly generated zval is detached from internal data and has only a
local scope, meaning that it can be changed or destroyed without implying global
changes in the script context:

zval **parameter;

/* retrieve parameter */
zend_get_parameters_ex(1, ¶meter);

/* at this stage, <parameter> still is connected */
/* to Zend's internal data buffers */

Creating Variables

/* make <parameter> write-safe */
SEPARATE_ZVAL (parameter);

/* now we can safely modify <parameter> */

/* without implying global changes

*/
SEPARATE_ZVAL uses emalloc() to allocate the new zval container, which means that
even if you don’t deallocate this memory yourself, it will be destroyed automatically
upon script termination. However, doing a lot of calls to this macro without freeing
the resulting containers will clutter up your RAM.

Note: As you can easily work around the lack of write access in the “traditional”
API (with zend_get_parameters() and so on), this API seems to be obsolete, and is
not discussed further in this chapter.

Creating Variables

‘When exchanging data from your own extensions with PHP scripts, one of the most
important issues is the creation of variables. This section shows you how to deal with
the variable types that PHP supports.

Overview

To create new variables that can be seen “from the outside” by the executing script,
you need to allocate a new zval container, fill this container with meaningful values,
and then introduce it to Zend’s internal symbol table. This basic process is common to
all variable creations:

zval *new_variable;

/* allocate and initialize new container */
MAKE_STD_ZVAL (new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable name" into the symbol
=table */
ZEND_SET_SYMBOL (EG(active_symbol_table), "new_variable_name", new_variable);

/* the variable is now accessible to the script by using $new_variable_name */

The macro MAKE_STD_ZVAL allocates a new zval container using ALLOC_ZVAL and
initializes it using INIT_ZVAL. As implemented in Zend at the time of this writing,
initializing means setting the reference count to 1 and clearing the is_ref flag, but
this process could be extended later—this is why it’s a good idea to keep using
MAKE_STD_ZVAL instead of only using ALLOC_ZVAL. If you want to optimize for speed
(and you don’t have to explicitly initialize the zval container here), you can use
ALLOC_ZVAL, but this is not recommended because it doesn’t ensure data integrity.

329

330 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

ZEND_SET_SYMBOL takes care of introducing the new variable to Zend’s symbol table.
This macro checks whether the value already exists in the symbol table and converts
the new symbol to a reference if so (with automatic deallocation of the old zval
container). This is the preferred method if speed is not a crucial issue and you'd like to
keep memory usage low.

Note that ZEND_SET_SYMBOL makes use of the Zend executor globals via the macro
EG. By specifying EG(active_symbol_table), you get access to the currently active
symbol table, dealing with the active, local scope. The local scope may difter depending
on whether the function was invoked from within a function.

If you need to optimize for speed and don’t care about optimal memory usage, you
can omit the check for an existing variable with the same value and instead force
insertion into the symbol table by using zend_hash_update():

zval *new_variable;

/* allocate and initialize new container */
MAKE_STD_ZVAL (new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable_name" into the symbol
-table */
zend_hash_update(EG(active_symbol_table), "new_variable name",
=strlen("new_variable name") + 1, &new_variable, sizeof(zval *), NULL);
This is actually the standard method used in most modules.
The variables generated with the snippet above will always be of local scope, so
they reside in the context in which the function has been called. To create new
variables in the global scope, use the same method but refer to another symbol table:

zval *new_variable;

// allocate and initialize new container
MAKE_STD_ZVAL (new_variable);

/1l
/] set type and variable contents here
/1

/] introduce this variable by the name "new_variable_name" into the global

=symbol table

ZEND_SET_SYMBOL (&EG(symbol_table), new_variable);
The macro ZEND_SET_SYMBOL is now being called with a reference to the main, global
symbol table by referring EG(symbol_table).

Note: The active_symbol_table variable is a pointer, but symbol_table is not. This
is why you have to use EG(active_symbol_table) and &EG(symbol_table) as
parameters to ZEND_SET_SYMBOL—it requires a pointer.

Creating Variables

Similarly, to get a more efficient version, you can hardcode the symbol table update:

zval *new_variable;

// allocate and initialize new container
MAKE_STD_ZVAL (new_variable);

/1
/] set type and variable contents here
/1l

/] introduce this variable by the name "new_variable_name" into the global
=symbol table
zend_hash_update (&EG(symbol_table), "new_variable name",
=strlen("new_variable_name") + 1, &new_variable, sizeof(zval *), NULL);
Listing 9.10 shows a sample source that creates two variables—1local_variable with a
local scope and global_variable with a global scope (see Figure 9.7). The full
example can be found on the CD-ROM.
Note: You can see that the global variable is actually not accessible from
within the function. This is because it’s not imported into the local scope using
global $global variable; in the PHP source

Listing 9.10 Creating variables with different scopes.

ZEND_FUNCTION(variable_creation)
{

zval *new_vari, *new_var2;

MAKE_STD_ZVAL (new_vart);
MAKE_STD_ZVAL (new_var2);

new_vari->type = IS_LONG;
new_vari->value.lval = 10;

new_var2->type = IS_LONG;
new_var2->value.lval = 5;

ZEND_SET_SYMBOL (EG(active_symbol_table), "local_variable", new_vari);
ZEND_SET_SYMBOL (&EG(symbol_table), "global_variable", new_var2);

RETURN_NULL();

331

332 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Fle Edit “iew Go Communicator Help

Local Variable

Type: integer
Contents: 10

Global Variable

Type: WULL
Contents:

scope...

Local Variable

Type: WULL
Contents:

Global Variable

Type: integer
Contents: 5

Creating variables in a local scope...

Accessing variables from the main

1= == |Document: Done

Sl %n 2P EE 2 | 4

Figure 9.7 Variables with different scopes.

Longs (Integers)

Now let’s get to the assignment of data to variables, starting with longs. Longs are

PHP’s integers and are very simple to store. Looking at the zval.value container

structure discussed earlier in this chapter, you can see that the long data type is directly

contained in the union, namely in the 1val field. The corresponding type value for

longs is IS_LONG (see Listing 9.11).

Listing 9.11 Creation of a long.

zval *new_long;
MAKE_STD_ZVAL (new_long) ;

new_long->type = IS_LONG;
new_long->value.lval = 10;

Creating Variables

Alternatively, you can use the macro ZVAL_LONG:
zval *new_long;

MAKE_STD_ZVAL (new_long);
ZVAL_LONG(new_long, 10);

Doubles (Floats)

Doubles are PHP’s floats and as easy to assign as longs, because their value is also
contained directly in the union. The member in the zval.value container is dval; the
corresponding type is IS_DOUBLE.

zval *new_double;
MAKE_STD_ZVAL (new_double) ;
new_double->type = IS_DOUBLE;
new_double->value.dval = 3.45;

Alternatively, you can use the macro ZVAL_DOUBLE:
zval *new_double;

MAKE_STD_ZVAL (new_double) ;
ZVAL_DOUBLE (new_double, 3.45);

Strings

Strings need slightly more effort. As mentioned earlier, all strings that will be
associated with Zend’s internal data structures need to be allocated using Zend’s own
memory-management functions. Referencing of static strings or strings allocated with
standard routines is not allowed. To assign strings, you have to access the structure str
in the zval.value container. The corresponding type is IS_STRING:

zval *new_string;
char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL (new_string);

new_string->type = IS_STRING;
new_string->value.str.len = strlen(string_contents);
new_string->value.str.val = estrdup(string_contents);

Note the usage of Zend’s estrdup() here. Of course, you can also use the predefined
macro ZVAL_STRING:

zval *new_string;
char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL (new_string);
ZVAL_STRING(new_string, string_contents, 1);

333

334 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

ZVAL_STRING accepts a third parameter that indicates whether the supplied string
contents should be duplicated (using estrdup()). Setting this parameter to 1 causes the
string to be duplicated; @ simply uses the supplied pointer for the variable contents.
This is most useful if you want to create a new variable referring to a string that’s
already allocated in Zend internal memory.

If you want to truncate the string at a certain position or you already know its
length, you can use ZVAL_STRINGL (zval, string, length, duplicate), which accepts
an explicit string length to be set for the new string. This macro is faster than
ZVAL_STRING and also binary-safe.

To create empty strings, set the string length to @ and use empty_string as
contents:

new_string->type = IS_STRING;

new_string->value.str.len = 0;

new_string->value.str.val = empty_string;

Of course, there’s a macro for this as well (ZVAL_EMPTY_STRING):

MAKE_STD_ZVAL (new_string);
ZVAL_EMPTY_STRING(new_string);

Booleans

Booleans are created just like longs, but have the type IS_B0OL. Allowed values in lval
are @ and 1:

zval *new_bool;

MAKE_STD_ZVAL (new_bool);
new_bool->type = IS_BOOL;
new_bool->value.lval = 1;

The corresponding macros for this type are ZVAL_BOOL (allowing specification of the
value) as well as ZVAL_TRUE and ZVAL_FALSE (which explicitly set the value to TRUE and
FALSE, respectively).

Arrays

Arrays are stored using Zend’s internal hash tables, which can be accessed using the
zend_hash_* () API. For every array that you want to create, you need a new hash-
table handle, which will be stored in the ht member of the zval.value container.

Creating Variables

There’s a whole API solely for the creation of arrays, which is extremely handy. To
start a new array, you call array_init():

zval *new_array;
MAKE_STD_ZVAL (new_array) ;

if(array_init(new_array) != SUCCESS)
{

// do error handling here

}

If array_init() fails to create a new array, it returns FAILURE.

To add new elements to the array, you can use numerous functions, depending on
what you want to do.Tables 9.8, 9.9, and 9.10 describe these functions. All functions
return FAILURE on failure and SUCCESS on success.

Note: The functions in Table 9.8 all operate on the array array with the key key.
The key string doesn’t have to reside in Zend internal memory; it will be duplicated
by the API.

Table 9.8 Zend’s API for Associative Arrays

Function

add_assoc_long

Description

Adds an element of type long.

(zval *array, char *key, long n);

add_assoc_unset Adds an unset element.

(zval *array, char *key);

add_assoc_bool Adds a Boolean element.

(zval *array, char *key, int b);

add_assoc_resource Adds a resource to the array.

(zval *array, char *key, int r);

add_assoc_double Adds a floating-point value.

(zval *array, char *key, double d);

add_assoc_string Adds a string to the array. The flag duplicate
(zval *array, char *key, char specifies whether the string contents have to be

*str,

int duplicate);

add_assoc_stringl(zval *array,

char *key, char *str,
int duplicate);

length,

uint

copied to Zend internal memory.

Adds a string with the desired length Iength
to the array. Otherwise, behaves like
add_assoc_string()

The index is always an integer.

Note: The functions in Table 9.9 all operate on the array array with the index idx.

335

336 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Table 9.9 Zend’s API for Indexed Arrays, Part 1

Function

add_index_long

(zval *array, uint idx, long n);
add_index_unset

(zval *array, uint idx);
add_index_bool

(zval *array, uint idx, int b);

add_index_resource

(zval *array, uint idx, int r);

add_index_double

(zval *array, uint idx, double d);

add_index_string(zval *array,
uint idx, char *str, int duplicate);

add_index_stringl(zval *array,
uint idx, char *str, uint
length, int duplicate);

Description

Adds an element of type long.
Adds an unset element.

Adds a Boolean element.
Adds a resource to the array.
Adds a floating-point value.

Adds a string to the array. The flag duplicate
specifies whether the string contents have to be
copied to Zend internal memory.

Adds a string with the desired length Iength
to the array. This function is faster and
binary-safe. Otherwise, behaves like
add_index_string().

Note: The functions in Table 9.10 all operate on the array array. These functions
automatically generate a new index based on the highest index found in the array.

Table 9.10 Zend’s API for Indexed Arrays, Part 2

Function

add_next_index_long
(zval *array, long n);

add_next_index_unset(zval *array);

add_next_index_bool
(zval *array, int b);

add_next_index_resource
(zval *array, int r);
add_next_index_double
(zval *array, double d);

add_next_index_string(zval *array,
char *str, int duplicate);

add_next_index_stringl(zval *array,
char *str, uint length, int
duplicate);

Description

Adds an element of type long.

Adds an unset element.

Adds a Boolean element.
Adds a resource to the array.
Adds a floating-point value.

Adds a string to the array. The flag duplicate
specifies whether the string contents have to be
copied to Zend internal memory.

Adds a string with the desired length Iength
to the array. This function is faster and
binary-safe. Otherwise, behaves like
add_index_string().

Creating Variables 337

All these functions provide a handy abstraction to Zend’s internal hash API. Of
course, you can also use the hash functions directly—for example, if you already
have a zval container allocated that you want to insert into an array. This is done
using zend_hash_update () for associative arrays (see Listing 9.12) and
zend_hash_index_update() for indexed arrays (see Listing 9.13):

Listing 9.12 Adding an element to an associative array.

zval *new_array, *new_element;
char *key = "element_key";

MAKE_STD_ZVAL (new_array) ;
MAKE_STD_ZVAL (new_element);

if(array_init(new_array) == FAILURE)
{

// do error handling here

}
ZVAL_LONG(new_element, 10);

if(zend_hash_update(new_array->value.ht, key, strlen(key) + 1,
= (void *)&new_element, sizeof(zval *), NULL) == FAILURE)
{

/| do error handling here

}

Listing 9.13 Adding an element to an indexed array.

zval *new_array, *new_element;
int key = 2;

MAKE_STD_ZVAL (new_array) ;
MAKE_STD_ZVAL (new_element);

if(array_init(new_array) == FAILURE)
{
/| do error handling here

}

ZVAL_LONG(new_element, 10);

if (zend_hash_index_update(new_array->value.ht, key, (void *)&new_element,
=sizeof(zval *), NULL) == FAILURE)
{

// do error handling here

}

338 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

To emulate the functionality of add_next_index_* (), you can use this:

zend_hash_next_index_insert(ht, zval **new_element, sizeof(zval *), NULL)

Note: To return arrays from a function, use array_init() and all following actions on

the predefined variable return_value (given as argument to your exported function;
see the earlier discussion of the call interface).You do not have to use MAKE_STD_ZVAL

on this.

Tip: To avoid having to write new_array->value.ht every time, you can use
HASH_OF (new_array), which is also recommended for compatibility and style reasons.

Objects

Since objects can be converted to arrays (and vice versa), you might have already
guessed that they have a lot of similarities to arrays in PHP. Objects are maintained
with the same hash functions, but there’s a different API for creating them.

To initialize an object, you use the function object_init():

zval *new_object;
MAKE_STD_ZVAL (new_object);

if(object_init(new_object) != SUCCESS)
{

// do error handling here

}

You can use the functions described in Table 9.11 to add members to your object.
Note: All functions in Table 9.11 work on the object object with the key key.
The key forms the member name, so the resulting member can be accessed via

$object->key.

Table 9.11 Zend’s API for Object Creation

Function

add_property_long

(zval *object, char *key, long 1);
add_property_unset

(zval *object, char *key);
add_property_bool

(zval *object, char *key, int b);
add_property_resource

(zval *object, char *key, int r);
add_property_double

(zval *object, char *key, double d);
add_property_string(zval *object,
char *key, char *str, int duplicate);

Description

Adds a long to the object.

Adds an unset property to the object.
Adds a Boolean to the object.

Adds a resource to the object.

Adds a double to the object.

Adds a string to the object.

Resources

Function Description

add_property_stringl(zval *object, Adds a string of the specified length to the

char *key, char *str, uint length, object. This function is faster than

int duplicate); add_property_string and also binary-safe.
Resources

Resources are a special kind of data type in PHP. The term resources doesn’t really refer
to any special kind of data, but to an abstraction method for maintaining any kind of’
information. Resources are kept in a special resource list within Zend. Each entry in
the list has a corresponding type definition that denotes the kind of resource to which
it refers. Zend then internally manages all references to this resource. Access to a
resource is never possible directly—only via a provided API. As soon as all references
to a specific resource are lost, a corresponding shutdown function is called.

For example, resources are used to store database links and file descriptors. The de
facto standard implementation can be found in the MySQL module, but other modules
such as the Oracle module also make use of resources.

To get a handle for your special resource, you have to register the resource type
prior to using it:

int resource_handle = register_list destructors(destructor_handler, NULL);

This call gives you a handle that you can use whenever adding entries to the resource
list. The specified function (here named destructor_handler) will always be called
whenever all references to a certain resource are lost and Zend tries to kill it. This
function has to take care of proper resource freeing and deallocation. It must be of
type void and as argument it only has to accept a pointer to the type that you want to
insert into the list.

typedef struct
{

int resource_link;
int resource_type;
} my_resource;

void destructor_handler(my_resource *resource)

{
// do all deallocation relating to the resource here

/| free container
efree(resource);

339

340 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Now, to add a resource to the list, use zend_list_insert():

my_resource *resource;

/| allocate resource here and fill it with values
resource = (my_resource *)emalloc(sizeof(my_resource));

resource_value = zend_list_insert(resource, resource_handle);

The function accepts two arguments: The first is the pointer to the resource that you
want to add to the list, and the second is the type of the resource (for which you
previously registered a destructor).You can now use the return value of this call to
zend_list_insert() as the value field in your corresponding IS_RESOURCE zval
container.

For example, to use the resource allocated above as return value, do this:

RETURN_RESOURCE (resource_value);

Or, more elaborately:

return_value->type = IS_RESOURCE;

return_value->value.lval = resource_value;
You can see that resources are stored in the 1lval field.

Zend now keeps track of all references to this resource. As soon as all references to
the resource are lost, the destructor that you previously registered for this resource is
called. The nice thing about this setup is that you don’t have to worry about memory
leakages introduced by allocations in your module—just register all memory
allocations that your calling script will refer to as resources. As soon as the script
decides it doesn’t need them anymore, Zend will find out and tell you.

To force removal of a resource from the list, use the function zend_list_delete().
You can also force the reference count to increase if you know that you're creating
another reference for a previously allocated value (for example, if you’re automatically
reusing a default database link). For this case, use the function zend_list_addref (). To
search for previously allocated resource entries, use zend_list_find().The complete
API can be found in zend_list.h.

For a little example showing how to make use of resources, see the demonstration
on the CD-ROM.

Macros for Automatic Global Variable Creation

In addition to the macros discussed earlier, a few macros allow easy creation of simple
global variables. These are nice to know in case you want to introduce global flags, for
example. This is somewhat bad practice, but Table 9.12 describes macros that do
exactly this task. They don’t need any zval allocation; you simply have to supply a
variable name and value.

Macros for Automatic Global Variable Creation

Note: All macros in Table 9.12 create a global variable of the name name with the
value value.

Table 9.12 Macros for Global Variable Creation

Macro Description
SET_VAR_STRING(name, value) Creates a new string.

SET_VAR_STRINGL (name, value, length) Creates a new string of the specified length.
This macro is faster than SET_VAR_STRING
and also binary-safe.

SET_VAR_LONG (name, value) Creates a new long.
SET_VAR_DOUBLE (name, value) Creates a new double.

Creating Constants

Zend supports the creation of true constants (as opposed to regular variables).
Constants are accessed without the typical dollar sign ($) prefix and are available in all
scopes. Examples include TRUE and FALSE, to name just two.

To create your own constants, you can use the macros in Table 9.13. All the macros
create a constant with the specified name and value.

You can also specify flags for each constant:

= CONST_CS—This constant’s name is to be treated as case sensitive.

= CONST_PERSISTENT—This constant is persistent and won’t be “forgotten” when
the current process carrying this constant shuts down.

To use the flags, combine them using a binary OR:

/] register a new constant of type "long"

REGISTER_LONG_CONSTANT ("NEW_MEANINGFUL_CONSTANT", 324, CONST CS !

=CONST_PERSISTENT) ;
There are two types of macros—REGISTER_*_CONSTANT and
REGISTER_MAIN_*_CONSTANT.The first type creates constants bound to the current
module. These constants are dumped from the symbol table as soon as the module that
registered the constant is unloaded from memory. The second type creates constants
that remain in the symbol table independently of the module.

Table 9.13 Macros for Creating Constants

Macro Description

REGISTER_LONG_CONSTANT Registers a new constant of type long.
(name, value, flags)

REGISTER_MAIN_LONG_CONSTANT
(name, value, flags)

continues

341

342 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Table 9.13 Continued

Macro Description
REGISTER_DOUBLE_CONSTANT Register a new constant of type double.
(name, value, flags)

REGISTER_MAIN_DOUBLE_CONSTANT
(name, value, flags)

REGISTER_STRING_CONSTANT Registers a new constant of type string. The
(name, value, flags) specified string must reside in Zend’s internal
REGISTER_MAIN_STRING_CONSTANT memory.

(name, value, flags)

REGISTER_STRINGL_CONSTANT Registers a new constant of type string. The
(name, value, length, flags) string length is explicitly set to lIength. The
REGISTER_MAIN_STRINGL_CONSTANT specified string must reside in Zend’s internal
(name, value, length, flags) memory

Duplicating Variable Contents: The Copy
Constructor

Sooner or later, you may need to assign the contents of one zval container to another.
This is easier said than done, since the zval container doesn’t contain only type
information, but also references to places in Zend’s internal data. For example,
depending on their size, arrays and objects may be nested with lots of hash table
entries. By assigning one zval to another, you avoid duplicating the hash table entries,
using only a reference to them (at most).

To copy this complex kind of data, use the copy constructor. Copy constructors are
typically defined in languages that support operator overloading, with the express
purpose of copying complex types. If you define an object in such a language, you
have the possibility of overloading the = operator, which is usually responsible for
assigning the contents of the lvalue (result of the evaluation of the left side of the
operator) to the rvalue (same for the right side).

Overloading means assigning a different meaning to this operator, and is usually used
to assign a function call to an operator. Whenever this operator would be used on such
an object in a program, this function would be called with the lvalue and rvalue as
parameters. Equipped with that information, it can perform the operation it intends
the = operator to have (usually an extended form of copying).

This same form of “extended copying” is also necessary for PHP’s zval containers.
Again, in the case of an array, this extended copying would imply re-creation of all
hash-table entries relating to this array. For strings, proper memory allocation would
have to be assured, and so on.

Returning Values

Zend ships with such a function, called zend_copy_ctor() (the previous PHP
equivalent was pval_copy_constructor()).

A most useful demonstration is a function that accepts a complex type as argument,
modifies it, and then returns the argument:

zval **parameter;

if ((ZEND_NUM_ARGS() != 1) || (zend_get_parameters_ex(1, ¶meter) != SUCCESS))

{
WRONG_PARAM_COUNT ;

}
// do modifications to the parameter here

/] now we want to return the modified container:

*return_value == **parameter;

zval_copy_ctor(return_value);

The first part of the function is plain-vanilla argument retrieval. After the (left out)
modifications, however, it gets interesting: The container of parameter is assigned to
the (predefined) return_value container. Now, in order to eftectively duplicate its
contents, the copy constructor is called. The copy constructor works directly with the
supplied argument, and the standard return values are FAILURE on failure and SUCCESS
on success.

If you omit the call to the copy constructor in this example, both parameter and
return_value would point to the same internal data, meaning that return_value
would be an illegal additional reference to the same data structures. Whenever changes
occurred in the data that parameter points to, return_value might be affected. Thus,
in order to create separate copies, the copy constructor must be used.

The copy constructor’s counterpart in the Zend API, the destructor zval_dtor(),
does the opposite of the constructor. The corresponding alias in the PHP API is
pval_destructor().

Returning Values

Returning values from your functions to PHP was described briefly in an earlier
section; this section gives the details. Return values are passed via the return_value
variable, which is passed to your functions as argument. The return_value argument
consists of a zval container (see the earlier discussion of the call interface) that you
can freely modify. The container itself is already allocated, so you don’t have to run
MAKE_STD_ZVAL on it. Instead, you can access its members directly.

To make returning values from functions easier and to prevent hassles with
accessing the internal structures of the zval container, a set of predefined macros is
available (as usual). These macros automatically set the corresponding type and value, as
described in Tables 9.14 and 9.15.

343

344 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Note: The macros in Table 9.14 automatically return from your function.

Table 9.14 Predefined Macros for Returning Values from a Function

Macro

RETURN_RESOURCE (resource)
RETURN_BOOL (bool)

RETURN_NULL ()

RETURN_LONG (Iong)

RETURN_DOUBLE (double)
RETURN_STRING(string, duplicate)

RETURN_STRINGL (string, length, duplicate)

RETURN_EMPTY_STRING()
RETURN_FALSE
RETURN_TRUE

Description

Returns a resource.

Returns a Boolean.

Returns nothing (a NULL value).
Returns a long.

Returns a double.

Returns a string. The duplicate flag
indicates whether the string should be
duplicated using estrdup().

Returns a string of the specified
length; otherwise, behaves like
RETURN_STRING. This macro is faster
and binary-safe, however.

Returns an empty string.
Returns Boolean false.

Returns Boolean true.

function.

Note: The macros in Table 9.15 only set the return value; they don’t return from your

Table 9.15 Predefined Macros for Setting the Return Value of a Function

Macro

RETVAL_RESOURCE (resource)

RETVAL_BOOL (bool)

RETVAL_NULL ()
RETVAL_LONG (1ong)

RETVAL_DOUBLE (double)

RETVAL_STRING(string, duplicate)

Description
Sets the return value to the specified

resource.

Sets the return value to the specified
Boolean value.

Sets the return value to NULL.

Sets the return value to the specified
long.

Sets the return value to the specified

double.

Sets the return value to the specified
string and duplicates it to Zend
internal memory if desired (see also
RETURN_STRING).

Printing Information

Macro Description

RETVAL_STRINGL(string, length, duplicate) Sets the return value to the specified
string and forces the length to
become length (see also
RETVAL_STRING). This macro is faster
and binary-safe, and should be used
whenever the string length is known.

RETVAL_EMPTY_STRING () Sets the return value to an empty
string.

RETVAL_FALSE Sets the return value to Boolean false.

RETVAL_TRUE Sets the return value to Boolean true.

Complex types such as arrays and objects can be returned by using array_init() and
object_init(), as well as the corresponding hash functions on return_value. Since
these types cannot be constructed of trivial information, there are no predefined
macros for them.

Printing Information

Often it’s necessary to print messages to the output stream from your module, just as
print() would be used within a script. PHP offers functions for most generic tasks,
such as printing warning messages, generating output for phpinfo(), and so on.The
following sections provide more details. Examples of these functions can be found on
the CD-ROM.

zend_printf()

zend_printf () works like the standard printf (), except that it prints to Zend’s output
stream.

zend_error()

zend_error() can be used to generate error messages. This function accepts two
arguments; the first is the error type (see zend_errors.h) and the second is the error
message:

zend_error(E_WARNING, "This function has been called with empty arguments");
Table 9.16 shows a list of possible values (see Figure 9.8).These values are also referred

to in php.ini. Depending on which error type you choose, your messages will be
logged.

345

346 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Table 9.16 Zend’s Predefined Error Messages

Error Description

E_ERROR Signals an error and terminates execution of the
script immediately.

E_WARNING Signals a generic warning. Execution continues.
E_PARSE Signals a parser error. Execution continues.
E_NOTICE Signals a notice. Execution continues. Note that

by default the display of this type of error
messages is turned off in php.ini.

E_CORE_ERROR Internal error by the core; shouldn’t be used by
user-written modules.

E_COMPILE_ERROR Internal error by the compiler; shouldn’t be used
by user-written modules.

E_COMPILE_WARNING Internal warning by the compiler; shouldn’t be

used by user-written modules.

File Edit “iew Go Communicator Help

Warning: This 1s an E_WARINING in
thomefwwwhtdocs/infoprint.php on line 5

Parse error: Thisis an E_ PARSE in
thomefwwwhtdocs/infoprint.php on line 5

) I (= I A = = D=

Figure 9.8 Display of warning messages in the browser.

Including Output in phpinfo()
After creating a real module, you’ll want to show information about the module in
phpinfo() (in addition to the module name, which appears in the module list by
default). PHP allows you to create your own section in the phpinfo() output with the
ZEND_MINFO() function. This function should be placed in the module descriptor block
(discussed earlier) and is always called whenever a script calls phpinfo().

PHP automatically prints a section in phpinfo() if you specify the ZEND_MINFO
function, including the module name in the heading. Everything else must be
formatted and printed by you.

Printing Information

Typically, you can print an HTML table header using
php_info_print_table_start() and then use the standard functions
php_info_print_table_header() and php_info_print_table row().As arguments,
both take the number of columns (as integers) and the column contents (as strings).
Listing 9.14 shows a source example; Figure 9.9 shows the output.To print the table
footer, use php_info_print_table_end().

Listing 9.14 Source code and output in phpinfo().

php_info_print_table_start();

php_info_print_table_header(2, "First column", "Second column");
php_info_print_table _row(2, "Entry in first row", "Another entry");
php_info_print_table_row(2, "Just to fill", "another row here");
php_info_print_table_end();

elscape

File Edit Wiew Go Communicator Help

e |
|Hnst |k_ra&werk.tower.net

[User-Agent [Mozillat4 61 [en] (Wind8, T)

| HTTF Response Headers

[X-Powered-By [PHP/4 Obdpll
|Curmectiun |close
|Content—T]rpe |t55¢ﬂ1tnﬂ;charset=iso-8859-l

Printing information - examples

| First column | Second column
|Entry in first row |A.nother entry J
|Just to fill |another rew here

Additional Modules

|Flle functiens
|Soc1{et functions

4 |
= == |Dacument: Done

Figure 9.9 Output from phpinfo().

Execution Information

You can also print execution information, such as the current file being executed. The
name of the function currently being executed can be retrieved using the function
get_active_function_name (). This function returns a pointer to the function name
and doesn’t accept any arguments. To retrieve the name of the file currently being

347

348 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

executed, use zend_get_executed_filename().This function accesses the executor
globals, which are passed to it using the ELS_C macro. The executor globals are
automatically available to every function that’s called directly by Zend (they’re part of
the INTERNAL_FUNCTION_PARAMETERS described earlier in this chapter). If you want to
access the executor globals in another function that doesn’t have them available
automatically, call the macro ELS_FETCH() once in that function; this will introduce
them to your local scope.

Finally, the line number currently being executed can be retrieved using the
function zend_get_executed_lineno().This function also requires the executor globals
as arguments. For examples of these functions, see Listing 9.15 and Figure 9.10. Of
course, all the examples are also available on the CD-ROM.

Listing 9.15 Printing execution information.

zend_printf("The name of the current function is %s
",
=get_active_function_name());

zend_printf("The file currently executed is %s
",
=zend_get_executed_filename(ELS_C));

zend_printf("The current line being executed is %i
",
=zend_get_executed_lineno(ELS_C));

$ Netscape [_[O]x]

File Edit View Ge Commuricator Help

LLx|

Printing some debug
information

The name of the current function is debugprint
The file currently executed is fhome/wwwihtdocs/infoprint php
The current line being executed is 11

“
= == |Document Dore

Figure 9.10 Printing execution information.

Startup and Shutdown Functions

Startup and shutdown functions can be used for one-time initialization and
deinitialization of your modules. As discussed earlier in this chapter (see the
description of the Zend module descriptor block), there are global, module, and
request startup and shutdown events.

The global startup functions are called once when PHP starts up, similarly the
global shutdown functions are called once when PHP shuts down. Please note that
they’re really only called once, not when a new Apache process is being created!

The module startup and shutdown functions are called whenever a module is
loaded and needs initialization; the request startup and shutdown functions are called
every time a request is processed (meaning that a file is being executed).

Calling User Functions

For dynamic extensions, module and request startup/shutdown events happen at
the same time.

Declaration and implementation of these functions can be done with macros; see
the earlier section “Declaration of the Zend Module Block” for details.

Calling User Functions

You can call user functions from your own modules, which is very handy when
implementing callbacks - for example, for array walking, searching, or simply for
event-based programs.

User functions can be called with the function call_user function_ex(). It
requires a hash value for the function table you want to access, a pointer to an object
(if you want to call a method), the function name, return value, number of arguments,
argument array, and a flag indicating whether you want to perform zval separation:

ZEND_API call_user_function_ex(HashTable *function_table, zval *object,

=zval *function_name, zval **retval_ptr ptr,

=1int param_count, zval **params|[]

=int no_separation);
Notice that you don’t have to specify both function table and object; either will do.
If you want to call a method, you have to supply the object that contains this method,
in which case call_user_function() automatically sets the function table to this
object’s function table. Otherwise, you only need to specify function_table and can
set object to NULL.

Usually, the default function table is the “root” function table containing all
function entries. This function table is part of the compiler globals and can be accessed
using the macro CG. To introduce the compiler globals to your function, call the macro
CLS_FETCH once.

The function name is specified in a zval container. This might be a bit surprising at
first, but is quite a logical step, since most of the time you’ll accept function names as
parameters from calling functions within your script, which in turn are contained in
zval containers again. Thus, you only have to pass your arguments through to this
function. This zval must be of type IS_STRING.

The next argument consists of a pointer to the return value.You don’t have to
allocate memory for this container; the function will do so by itself. However, you
have to destroy this container (using zval_dtor()) afterward!

Next is the parameter count as integer and an array containing all necessary
parameters. The last argument specifies whether the function should perform zval
separation—this should always be set to 0. If set to 1, the function consumes less
memory but fails if any of the parameters need separation.

349

350 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Listing 9.16 and Figure 9.11 show a small demonstration of calling a user function.
The code calls a function that’s supplied to it as argument and directly passes this
function’s return value through as its own return value. Note the use of the
constructor and destructor calls at the end—it might not be necessary to do it this
way here (since they should be separate values, the assignment might be safe), but this
is bulletproof.

Listing 9.16 Calling user functions.

zval **function_name;
zval *retval;

if ((ZEND_NUM_ARGS() != 1) |} (zend_get_parameters_ex(1, &function_name)
== SUCCESS))

{
WRONG_PARAM_COUNT;
}
if ((*function_name)->type != IS_STRING)
{
zend_error(E_ERROR, "Function requires string argument");
}

CLS_FETCH();

if(call_user_function_ex(CG(function_table), NULL, *function_name, &retval,
=0, NULL, 0) != SUCCESS)

{

zend_error(E_ERROR, "Function call failed");

}

zend_printf("We have %i as type
", retval->type);
*return_value = *retval;
zval_copy_ctor(return_value);

zval_dtor(retval);

<?php

dl("call_userland.so");

function test_function()

{
print("We are in the test function!
");

return("hello");

$return_value = call_userland("test_function");

Calling User Functions 351

print("Return value: \"$return_value\"
");
7>

We are in the test function!
e have 3 as type
Eeturn value: "hello”

[== 2= = 4

Figure 9.11 Calling user functions.

Initialization File Support

PHP 4.0 features a redesigned initialization file support. It’s now possible to specify
default initialization entries directly in your code, read and change these values at
runtime, and create message handlers for change notifications.

To create an .ini section in your own module, use the macros PHP_INI_BEGIN() to
mark the beginning of such a section and PHP_INI_END() to mark its end. In between
you can use PHP_INI_ENTRY() to create entries.

PHP_INI_BEGIN()

PHP_INI_ENTRY("first_ini_entry", "has_string_value", PHP_INI_ALL, NULL)

PHP_INI_ENTRY("second_ini_entry", "2", PHP_INI_SYSTEM,
=0nChangeSecond)

PHP_INI_ENTRY("third_ini_entry", ‘"xyz", PHP_INI_USER, NULL)

«PHP_INI_END()

The PHP_INI_ENTRY() macro accepts four parameters: the entry name, the entry value,
its change permissions, and a pointer to a change-notification handler. Both entry
name and value must be specified as strings, regardless of whether they really are
strings or integers.

The permissions are grouped into three sections: PHP_INI_SYSTEM allows a change
only directly in the php3.ini file; PHP_INI_USER allows a change to be overridden by a
user at runtime using additional configuration files, such as .htaccess); and
PHP_INI_ALL allows changes to be made without restrictions. There’s also a fourth
level, PHP_INI_PERDIR, for which we couldn’t verify its behavior yet.

352 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

The fourth parameter consists of a pointer to a change-notification handler.
Whenever one of these initialization entries is changed, this handler is called. Such a
handler can be declared using the PHP_INI_MH macro:

PHP_INI_MH(OnChangeSecond); // handler for ini-entry
="second_ini_entry"

/| specify ini-entries here

PHP_INI_MH(OnChangeSecond)

{
zend_printf("Message caught, our ini entry has been changed to %s
",
=new_value);
return(SUCCESS) ;
}

The new value is given to the change handler as string in the variable new_value.
‘When looking at the definition of PHP_INI_MH, you actually have a few parameters
to use:

#define PHP_INI_MH(name) int name(php_ini_entry *entry, char *new_value,
=uint *new_value_length, void *mh_argi,
=void *mh_arg2, void *mh_arg3)
All these definitions can be found in php_ini.h.Your message handler will have access
to a structure that contains the full entry, the new value, its length, and three optional
arguments. These optional arguments can be specified with the additional macros
PHP_INI_ENTRY1 (allowing one additional argument), PHP_INI_ENTRY2 (allowing two
additional arguments), and PHP_INI_ENTRY3 (allowing three additional arguments).
The change-notification handlers should be used to cache initialization entries
locally for faster access or to perform certain tasks that are required if a value changes.
For example, if a constant connection to a certain host is required by a module and
someone changes the hostname, automatically terminate the old connection and
attempt a new one.
Access to initialization entries can also be handled with the macros shown in
Table 9.17.

Table 9.17 Macros to Access Initialization Entries in PHP

Macro Description

INI_INT (name) Returns the current value of entry name as integer (long).
INI_FLT(name) Returns the current value of entry name as float (double).
INI_STR(name) Returns the current value of entry name as string. Nofe:

This string is not duplicated, but instead points to internal
data. Further access requires duplication to local memory.

Where to Go from Here 353

Macro Description

INI_BOOL (name) Returns the current value of entry name as Boolean
(defined as zend_bool, which currently means unsigned
char).

INI_ORIG_INT (name) Returns the original value of entry name as integer (long).

INI_ORIG_FLT (name) Returns the original value of entry name as float (double).

INI_ORIG_STR(name) Returns the original value of entry name as string. Note:

This string is not duplicated, but instead points to internal
data. Further access requires duplication to local memory.

INI_ORIG_BOOL (name) Returns the original value of entry name as Boolean
(defined as zend_bool, which currently means unsigned

char).

Finally, you have to introduce your initialization entries to PHP. This can be done in
the module startup and shutdown functions, using the macros
REGISTER_INI_ENTRIES() and UNREGISTER_INI_ENTRIES():

ZEND_MINIT_FUNCTION(mymodule)

{
REGISTER_INI_ENTRIES();
}
ZEND_MSHUTDOWN_FUNCTION (mymodule)
{
UNREGISTER_INI_ENTRIES();
}

Where to Go from Here

You've learned a lot about PHP. You now know how to create dynamic loadable
modules and statically linked extensions.You've learned how PHP and Zend deal with
internal storage of variables and how you can create and access these variables. You
know quite a set of tool functions that do a lot of routine tasks such as printing
informational texts, automatically introducing variables to the symbol table, and so on.

Even though this chapter often had a mostly “referential” character, we hope that it
gave you insight on how to start writing your own extensions. For the sake of space,
we had to leave out a lot; we suggest that you take the time to study the header files
and some modules (especially the ones in the ext/standard directory and the MySQL
module, as these implement commonly known functionality). This will give you an
idea of how other people have used the API functions—particularly those that didn’t
make it into this chapter.

354 Chapter 9 Extending PHP 4.0: Hacking the Core of PHP

Reference: Some Configuration Macros

config.m4

The file config.m4 is processed by buildconf and must contain all the instructions to

be executed during configuration. For example, these can include tests for required

external files, such as header files, libraries, and so on. PHP defines a set of macros that

can be used in this process, the most useful of which are described in Table 9.18.

Table 9.18 M4 Macros for config.m4

Macro

AC_MSG_CHECKING (message)
AC_MSG_RESULT (value)
AC_MSG_ERROR (message)
AC_DEFINE (name,

value, description)

AC_ADD_INCLUDE (path)

AC_ADD_LIBRARY_WITH_PATH
(libraryname, librarypath)

AC_ARG_WITH(modulename, description,
unconditionaltest, conditionaltest)

PHP_EXTENSION (modulename, [shared])

Description

Prints a checking <message> text during
configure.

Gives the result to AC_MSG_CHECKING; should
specify either yes or no as value.

Prints message as error message during
configure and aborts the script.

Adds #define to php_config.h with the value
of value and a comment that says description
(this is useful for conditional compilation of
your module).

Adds a compiler include path; for example, used
if the module needs to add search paths for
header files.

Specifies an additional library to link.

Quite a powertul macro, adding the module
with description to the configure --help
output. PHP checks whether the option

- -with-<modulename> is given to the
configure script. If so, it runs the script
unconditionaltest (for example,

- -with-myext=yes), in which case the

value of the option is contained in the
variable $withval. Otherwise, it executes
conditionaltest.

This macro is a must to call for PHP to
configure your extension.You can supply a
second argument in addition to your module
name, indicating whether you intend compila-
tion as a shared module. This will result in a
definition at compile time for your source as
COMPILE_DL_<modulename>.

Additional API Macros

Reference: Some Configuration Macros

Shortly before the release of this book, a new set of macros was introduced into

Zend’s API that simplify access to zval containers (see Table 9.19). However, we chose

not to use them in the example sources, as they don’t make many accesses to zval

containers, and the macros would have resulted in source code that was more difficult

to read.

Table 9.19 New API macros for Accessing zval Containers

Macro

Z_LVAL(zval)
Z_DVAL(zval)
Z_STRVAL (zval)

Z STRLEN(zval)
Z_ARRVAL (zval)
Z_LVAL_P(zval)

Z DVAL_P(zval)
Z_STRVAL_P(zval_p)
Z_STRLEN_P(zval_p)
Z_ARRVAL_P(zval_p)
Z_LVAL_PP(zval_pp)
Z_DVAL_PP(zval_pp)

Z STRVAL_PP(zval pp)
Z_STRLEN_PP(zval_pp)
Z_ARRVAL_PP(zval_pp)

Refers to

(zval).value.

(zval).value.

(zval).

(zval).

value.

value.

(zval).value.

(*zval).value.
(*zval).value.
(*zval).value.
(*zval).value.

(*zval).value.

lval
dval
str.val
str.len
ht

lval
dval
str.val
str.len

ht

(**zval) .value.lval

(**zval) .value.dval

(**zval) .value.str.val

(**zval) .value.str.len

(**zval) .value.ht

Updates of this chapter can be found at www.phpwizard.net.

355

Symbols

& (ampersand), passing parameters
by reference, 67

100hot Web site, 278

A

abstracting blocks of code, 23
ActiveX controls, 194

addresses (IP), associating with
users, 125

add_root() function (LibXML), 265

administration (phpChat sample
application), 117-118

ampersand (&), passing parameters
by reference, 67

API (Application Programming
Interface), 111
compilation (knowledge repository
application), 237-238
database abstraction, 202
design example, 26-30
event-based API (Expat XML parser),
251-253
Zend API, 309
associative arrays, 335-336
creating objects, 338-339
indexed arrays, 336-337
macros for accessing zval
containers, 355
parameters for PHP functions,
309-310

Index

application design

customers’ role in, 91

phpChat sample application
administration and security, 117-118
application developer interface, 110
code developer interface, 111-117
HTML developer interface, 111
implementation, 119
IRC client/server structure, 95-97
network interface, 99-109
protocol comparison, 91-94
server represented as client, 97-98
specifications, 90-91
user interface, 109-110

Application Programming Interface.
See API

applications, 123. See also code;
projects
extending (phpChat sample
application), 111-117

Kedit, 123

knowledge repository, 226-227
API compilation, 237-238
authentication, 237
recursive functions (SQL), 236-237
requirements, 227-228
specification writing, 228-231
Template class (PHPLib), 231-236

multi-tier, 191
advantages of, 192-193
client/server architecture, 192
COM, 194-197
Java, 197-198

applications

security
authentication, 155-158
data validation, importance of;
141-146
encryption, 146-154
faws in, 140-141
qualified staff; importance of, 154-155
sessions, 124-126
cookies, passing session IDs, 126
data storage on client, disadvantages, 124
DN, passing session IDs, 130
dynamic paths, passing session IDs,
127-130
passing session IDs, 131
PHP session management, 132-140
session IDs, 125-126
URL rewriting, passing session IDs,
126-127
usability, 158-159
consistency with other Web sites, 161
discount usability engineering
(Jakob Nielsen), 163-165
personalized content, 161-162
self-explanatory applications, 162
suitability to task, 159-160
user control, 160

arguments. See also parameters
conversion functions, 321-323
extending PHP
accepting arguments, 317
accessing arguments, 321-326
number of arguments, determining,
317-318
passing arguments by reference,
326-328
retrieving arguments, 318-319
variable number of arguments, accessing,
319-321
write access to arguments, 328-329

array functions
count(), 37
current(), 40

each(), 34-40
for(), 37

list(), 33-34
next(), 40
prev(), 40
reset(), 39

arrays, 63-64
accessing variables, 146
associative, 29, 64
adding elements to, 337
Zend API, 335-336
creating (extending PHP), 335-338
indexed, 64
adding elements to, 337
Zend API, 336-337
multidimensional, 64-65
stacks (XML), 258-259

ASP, compared to PHP
(BizChek.com case study), 279

associating data with users, 125-126

associative arrays, 29, 35, 64
adding elements to, 337
Zend API, 335-336

Attr node, DOM (Document Object
Model), 261

attributes, XML, 244
Auth class (PHPLib), extending,
215-217

authentication, 155
HTTP Basic Authentication, 157-158
knowledge repository application, 237
login process, 155-157
PHP authentication, 158
PHPLib
advantages, 213-214
bitwise operations, 219-224
operational overview, 215-218
permissions, 218-219
sample application, 214

authentication by knowledge
method, 156

authentication by ownership
method, 156

authorization stage, login
process, 157

automated notification (CVS),
186-190

automatic build system, extending
PHP, 301-303

automatic fallback, PHPLib session
management, 207

automatic URL rewriting (PHP 4.0),
129-130

B

BCD (Binary Coded Digits), 28

Berners-Lee, Tim (HTTP as stateless
protocol), 124

bilingual code, avoiding, 21
Binary Coded Digits (BCD), 28
binary files (CVS), 189-190

bitwise operations, PHP-based
authentication, 219-224
clearing bits, 220
operator precedence, 221
sample application, 221-224
setting bits, 220
shifting bits, 221
testing bits, 221
toggling bits, 220
BizChek.com case study, 277-278
PHP
reasons for selecting, 278-280
updates, 280
‘Web-based email, advantages of, 278

block ciphers, 153

case studies 359

block comments, extracting, 14

blocks of code
abstracting, 23
Template class (PHPLib), 233

Booleans, creating (extending
PHP), 334

branches (CVS), 184-185

build system, extending PHP,
301-303

buildconf
automatic build process, extending
PHP, 301
compiling modules, 305

built-in modules, extending
PHP, 296

C

caching pages
PHP session management, 139
PHPLIib session management, 207

calling user functions, 349-351

case studies

BizChek.com, 277-278
PHE reasons for selecting, 278-280
updates to PHD, 280
Web-based email, advantages of, 278

MarketPlayer.com, 285, 289
applications available, 286
code management, 289
company background, 285-286
limitations of PHD, 287
PHE reasons for selecting, 286-287
server platform integration, 289
session management, 288
top-down programming, 288

Six Open Systems, 281
advantages of PHD, 285
company background, 281
implementation of PHD, 284-285

360

case studies

PHD, potential limitations, 283-284
PHD, reasons for selecting, 282-283
Six CMS application, 281-282

CBC (Cipher Block Chaining)
mode, 154

CDATA sections (XML), 246

CDATASection node, DOM
(Document Object Model), 262

CFB (Cipher Feedback) mode, 154

CGI programs, security
problems, 141

character references (XML), 245

CharacterData interface, DOM
(Document Object Model), 262

chat server sample application
(phpChat)
administration and security, 117-118
application developer interface, 110
code developer interface, 111-117
HTML developer interface, 111
implementation, 119
IR C client/server structure, 95-97
network interface, 99-102
downstream communication, 103-104
structure, 102-103
upstream communication, 104-109
protocol comparison, 91-94
server represented as client, 97-98
specifications, 90-91
user interface, 109-110

checking out CVS modules, 179

Cipher Block Chaining (CBC)
mode, 154

cipher blocks, 153

Cipher Feedback (CFB) mode, 154

classes, 29
accessing objects, 48-49
constructors, 49-50
implementation, 47-48

inheritance, 50

PHP 3.0 compared to PHP 4.0, 46-47

PHP handling of, 43-46
class_exists() function, 51

clearing bits (PHP-based
authentication), 220

client/server architecture
IRC (phpChat sample application),
95-97
multi-tier applications, 192

clients
data storage on, disadvantages, 124
phpChat sample application, server
represented as client, 97-98

close() function, 136

CMS (content-management
systems), Six Open Systems case
study, 281

company background, 281
PHP
advantages of, 285
implementation of, 284-285
potential limitations, 283-284
reasons for selecting, 282-283
SixCMS application, 281-282

code. See also applications; projects
API design example, 26-30
array functions
count(), 37
current(), 40
each(), 34-40
for(), 37
list(), 33-34
next(), 40
prev(), 40
reset(), 39
arrays, 63-64
associative arrays, 64
indexed arrays, 64
multidimensional arrays, 64-65

blocks, abstracting, 23
comments
extracting block comments, 14
file header, 14-15
function header, 16-17
header, 13
importance of, 13
inline, 13, 17-18
module header, 15-16
creating PHP extensions, 303-304
defined values, 32-33
extending PHP
exported function declarations, 309-310
exported functions implementation, 316
get_module() function
implementation, 316
header files, 309
module structure, 308
Zend function block declaration,
310-312
Zend module block declaration,
312-315
formatting for ease of reading, 9-13
functions, importance of logical
groups, 23
good writing style, importance of, 6-7
interfaces, importance of
consistency, 22
interpreted languages, 31-32
linked lists, 53-62
oor
accessing objects, 48-49
class implementation, 47-48
compared to procedural programming,
41-46
constructors, 49-50
inheritance, 50
list of special functions, 51
PHP 3.0 compared to PHP 4.0,
46-47
shopping cart sample code, 51-52

commands 361

self~-modifying, 78-80
dynamic function generator example,
80-85
hit counter example, 86
variables, naming, 7-8, 19-21

code developer interface (phpChat
sample application), 111-117

code management
(MarketPlayer.com case study), 289

ColdFusion compared to PHP
(BizChek.com case study), 279

collaboration, 175-176

CVS, 178-183
automated notification, 186-190
command reference, 191
CVSweb utility, 184
tags and branches, 184-185
WinCV'S utility, 183

directory structure, 176-178

multi-tier applications, 191
advantages of, 192-193
client/server architecture, 192
COM, 194-197
Java, 197-198

COM (Component Object Model),
194-197

commands
cvs add, 191
cvs checkout, 179, 191
cvs commit, 191
cvs dift, 182, 191
cvs log, 191
cvs login, 191
cvs remove, 191
cvs status, 182, 191
cvs tag -b, 185
cvs update, 185, 191
executing system commands, security
considerations, 142-143
talk (phpChat sample application), 92

362 Comment node, DOM (Document Object Model)

Comment node, DOM (Document
Object Model), 262

comments
block, extracting, 14
file header, 14-15
function header, 16-17
header, 13
importance of, 13
inline, 13, 17-18
module header, 15-16
XML, 245

committing
CVS files, 180
CVS modules, automated notification,
186-190

compiling modules
extending PHP, 304-305
compiling manually, 306
compiling with make, 305
troubleshooting, 308
complex types, extending PHP, 301
com_get() function, 195, 197
com_invoke() function, 196
com_load() function, 196
com_set() function, 195, 197

Concurrent Versions System. See
CVS

config.m4 file
automatic build system, extending
PHP, 301-303
configuration macros, 354-355

configuration macros (config.m4
file), 354-355

consistency
importance of, 11
in interfaces, importance of, 22
with other Web sites, application
usability, 161

constants. See also defined values
creating (extending PHP), 341-342
variable type constants (Zend
engine), 325

constructors (OOP), 49-50
container classes (PHPLIib), 209-210
contains_bad_words() function, 171

contains_phone_number()
function, 171

content-management systems.
See CMS

context-free protocol, HTTP as, 124

conversion functions for arguments,
321-323

cookies
lifetime of, 134
passing session IDs, 126

copy constructors, extending PHP,
342-343

count() array function, 37

counter example, self-modifying
code, 86

cryptography, 146. See also
encryption

CT_Dbm class (PHPLib), 210
CT_Ldap class (PHPLib), 210
CT_Shm class (PHPLib), 209
CT_Split_Sql class (PHPLib), 209
CT_Sql class (PHPLib), 209
current() array function, 40

custometrs, role in application
design, 91
customizing PHPLib, 201-202
CVS (Concurrent Versions System),
178-183
automated notification, 186-190
command reference, 191

CVSweb utility, 184
tags and branches, 184-185
WinCVS utility, 183

cvs add command, 191

cvs checkout command, 179, 191
cvs commit command, 191
cvs diff command, 182, 191
cvs log command, 191

cvs login command, 191

cvs remove command, 191

cvs status command, 182, 191
cvs tag —b command, 185

cvs update command, 185, 191
CVSweb utility, 184

D

Data Encryption Standard
(DES), 147

data encryption, 146-147
MCrypt function library, 152-154
PGP (Pretty Good Privacy), 148-152
public-key encryption, 147-148
symmetric encryption, 147

data serialization, 135
WDDX, 272

data storage on clients, disadvantages
of, 124

data structures (knowledge
repository application), 228-231

data validation
HTML templates, 174-175
importance of, 141-146
PHP Normal Form, 168-174

database abstraction, 202
DB_Sql sample application, 204-206
debug mode, 203

declaring 363

error handling, 203-204
page_open() function (PHPLib), 212
portability, 202-203
session management, 207
automatic fallback, 207
page caching, 207
sample application, 208-211
serializing objects, 208
url() function (PHPLib), 212-213
database flags, disadvantages
(phpChat sample application),
106-107

database-level security (phpChat
sample application), 118

databases
advantages of, 199
PHP-based authentication
bitwise operations, 219-224
operational overview, 215-218
permissions, 218-219

datatypes, WDDX, 272-274

DB_Sql class (PHPLib), 202
debug mode, 203
error handling, 203-204
portability, 202-203
sample application, 204-206

DCOM (Distributed Component
Object Model), 195

debug mode, DB_Sql class (database
abstraction), 203

declaring

exported functions, extending PHP,
309-310

startup and shutdown functions,
macros, 315

Zend function block, extending PHP,
310-312

Zend module block, extending PHP,
312-315

364 defined values

defined values, 32-33
depths (Expat XML parser), 253-259

DES (Data Encryption
Standard), 147
deserialize() function, 135
designing applications
customers’ role in, 91
phpChat sample application
administration and security, 117-118
application developer interface, 110
code developer interface, 111-117
HTML developer interface, 111
implementation, 119
IRC client/server structure, 95-97
network interface, 99-109
protocol comparison, 91-94
server represented as client, 97-98
specifications, 90-91
user interface, 109-110
destroy() function, 136

developer interface (phpChat sample
application), 110

development servers in directory
structure, 177

Diffie-Hellman public-key
encryption, 147

digital signatures, 148

directories, source tree layout
(extending PHP), 297-298

directory functions, extending
PHP, 300

directory structure, project
management, 176-178

discount usability engineering
(Jakob Nielsen), 163
heuristic evaluation, 164-165
scenarios, 163
thinking aloud, 164

Distributed Component Object
Model (DCOM), 195

dl directory, 298

dl() function, 295

DLLs, disadvantages of, 194
DNS, passing session IDs, 130
DocBook, 241-242

Document node, DOM (Document
Object Model), 260

Document Object Model (DOM),
XML parsers, 259-260

Attr node, 261
CDATASection node, 262
CharacterData interface, 262
Comment node, 262
Document node, 260
DocumentFragment node, 261
DocumentType node, 261
Element node, 261
Entity node, 261
EntityR eference node, 261
Node interface, 262
Notation node, 262
Processinglnstruction node, 261
sample XML document, 262-263
Text node, 262

document type declaration,
relationship with DTD (Document
Type Definition), 246

Document Type Definitions
(DTDs), 238

DocBook, 241-242

relationship with document type
declaration, 246

WML (Wireless Markup Language),
242-243

XML document structure, 247

documentation, importance of, 25

DocumentFragment node, DOM
(Document Object Model), 261

documents, XML, 243

attributes, 244

CDATA sections, 246

comments, 245

elements (tags), 243-244

entities, 245

LibXML parser, sample XML
document for, 264-265

namespaces, 247-249

PIs (processing instructions), 245

prologue, 246-247

structure, 247

valid compared to well-formed, 250

DocumentType node, DOM
(Document Object Model), 261

DOM (Document Object Model),

XML parsers, 259-260
Attr node, 261
CDATASection node, 262
CharacterData interface, 262
Comment node, 262
Document node, 260
DocumentFragment node, 261
DocumentType node, 261
Element node, 261
Entity node, 261
EntityReference node, 261
Node interface, 262
Notation node, 262
ProcessingInstruction node, 261
sample XML document, 262-263
Text node, 262

doubles (variables), creating, 333

downstream communication
(phpChat sample application),
103-104

dtd() function (LibXML), 265

email addresses, validation 365

DTDs (Document Type
Definitions), 238

DocBook, 241-242

relationship to document type
declaration, 246

WML (Wireless Markup Language),
242-243

XML document structure, 247

dumpmem() function
(LibXML), 265

dynamic function generator
example, 80-85

dynamic paths, passing session IDs,
127-130

dynamic programs, self-modifying
code, 78-80

E

each() array function, 34-40

ease of reading, formatting code for,
9-13

EBNF (Extended Backus-Naur
Form), 248-249

ecalloc() function, 299

ECB (Electronic Code Book)
mode, 153

efree() function, 299

Electronic Code Book (ECB)
mode, 153

Element node, DOM (Document
Object Model), 261

elements (tags), XML, 243-244
attributes, 244

email, Web-based (BizChek.com case
study), 278

email addresses, validation, 172-173

emalloc() function

emalloc() function, 299

encryption, 146-147
MCrypt function library, 152-154
PGP (Pretty Good Privacy), 148-152
public-key encryption, 147-148

symmetric encryption, 147
entities (XML), 245

Entity node, DOM (Document
Object Model), 261

EntityReference node, DOM
(Document Object Model), 261

Erdmann, Boris (development of
PHPLIib), 200

erealloc() function, 299
error codes, 29

error handling, DB_Sql class
(database abstraction), 203-204

error messages, printing, 346-347

error reporting, invalid array
accesses, 38

estrdup() function, 299
estrndup() function, 299
eval() function, warning about, 84

event-based API (Expat XML
parser), 251-253

event-based ping-handling
pseudocode (listing 3.2), 100

event-based processing, 100-102
exceptions, invalid array accesses, 38

exchanging structured data, 271
WDDX possible uses, 271-272

executing system commands,
security considerations, 142-143

execution information, printing,
348-349

Expat XML parser, 251
event-based API, 251-253
stacks/depths/lists, 253-259

exported functions
declaration, extending PHP, 309-310
implementation, extending PHP, 316

ext directory, 298

Extended Backus-Naur Form
(EBNF), 248-249

extending
applications (phpChat sample
application), 111-117
Auth class, 215-217

extending PHP, 293-358
accessing zval containers, 355
arguments

accepting, 317

accessing, 321-326

determining number of, 317-318

passing by reference, 326-328

retrieving, 318-319

variable number of arguments, accessing,

319-321

write access to, 328-329
automatic build system, 301-303
built-in modules, 296
calling user functions, 349-351
compiling modules, 304-305

with make, 305

manually, 306
complex types, 301
configuration macros, 354-355
copy constructors, 342-343
creating constants, 341-342
creating extensions, 303-304
creating objects, 338-339
creating variables, 329-332

arrays, 335-338

Booleans, 334

doubles, 333
longs, 332-333
strings, 333-334
directory and file functions, 300
exported functions
declarations, 309-310
implementation, 316
external modules, 295-296
get_module() function
implementation, 316
global variable creation, macros, 341
header files, 309
initialization file support, 351-354
macros, 299
memory management, 299-300
module structure, 308
printing messages, 345-349
resources (data type), 339-341
returning function values, 344-345
source tree layout, 297-298
startup and shutdown functions, 349
string handling, 300
troubleshooting compiled
modules, 308
using extensions, 306-308
in Zend engine, 296
Zend function block declaration,
310-312
Zend module block declaration,
312-315

extends keyword, 50

Extensible Markup Language.
See XML

external modules, extending PHP,
295-296

extracting block comments, 14

for() array function 367

F

file functions, extending PHP, 300
file header comments, 14-15

files
config.m4, configuration macros,
354-355
CVS, 179
binary, 189-190
committing, 180
merging, 180
include files, security, 177
initialization file support, extending
PHP, 351-354
multiple in projects, importance of, 24
password files, security, 177
source tree layout, extending PHP,
297-298

filesystem lockfiles, disadvantages
(phpChat sample application), 107

financial services (MarketPlayer.com
case study), 285, 289

applications available, 286
code management, 289
company background, 285-286
PHP

limitations of, 287

reasons for selecting, 286-287
server platform integration, 289
session management, 288
top-down programming, 288

flags (database), disadvantages,
106-107

flags (shared memory), phpChat
sample application, 108-109

floats. See doubles

for() array function, 37

368 formatting code for ease of reading

formatting code for ease of reading,
9-13

forms, data validation
HTML templates, 174-175
PHP Normal Form, 168-174

fsockopen() function, 320-321
function header comments, 16-17
functional decomposition, 229

functions. See also member
functions (OOP)
abstracting blocks of code, 23
add_root() (LibXML), 265
arguments
accepting, 317
accessing, 321-326
accessing variable number of; 319-321
conversion, 321-323
determining number of, 317-318
passing by reference, 326-328
retrieving, 318-319
write access to, 328-329
array functions
count(), 37
current(), 40
each(), 34-40
for(), 37
list(), 33-34
next(), 40
prev(), 40
reset(), 39
close(), 136
com_get(), 195,197
com_invoke(), 196
com_load(), 196
com_set(), 195, 197
definitions, macros, 311
deserialize(), 135
destroy(), 136
directory and file functions, 300
di(), 295
ded() (LibXML), 265

dumpmem() (LibXML), 265
dynamic function generator example,
80-85
error codes, 29
eval(), warning about, 84
exported
declaring, 309-310
implementation, 316
fsockopen(), listing 9.7, 320-321
func_get_args(), 75
func_num_args(), 75
gc(), 136
getProperty(), 198
get_module() implementation,
extending PHP, 316
logical groups, importance of, 23
MCrypt function library, 152-154
memory management, 299
naming, 19-21
new_xmldoc() (LibXML), 264
open(), 136
ParameterPassedByR eference(), 327
parameters, 27
accessing by reference, 66-74
optional, 74-75
Zend, 309-310
PHPLib
page_open(), 212
pself_url(), 213
purl(), 213
self_url(), 213
url(), 212-213
for printing, 345
execution information, 348-349
phpinfo(), 347-348
zend_error(), 346-347
zend_printf(), 346
rand(), creating random session IDs,
125-126
read(), 136
returning values, extending PHP,
344-345

root() (LibXML), 265
serialize(), 133, 135
session_destroy(), 134, 136
session_register(), 133-134
session_set_save_handler(), 135-136
session_start(), 133
session_unregister(), 134
setProperty(), 198
startup and shutdown

extending PHD, 349

macros for declaration, 315
string validation, 171
tree-handling library, 55
uniqid(), creating random session IDs,

125-126

unset(), 44
user functions, calling, 349-351
variable names, 77-78
WDDX, 274-276

available to PHP, 274
write(), 136
xmldoc() (LibXML), 264
xmldocfile() (LibXML), 264
xmltree() (LibXML), 269-270
Zend API

associative arrays, 335-336

creating objects, 338-339

indexed arrays, 336-337
Zend function block, declaring,

310-312

func_get_args() function, 75

func_num_args() function, 75

G

garbage collection, warning
about, 64

gc() function, 136
getProperty() function, 198
get_class() function, 51

get_module() function,
implementation, 316

HTTP (Hypertext Transfer Protocol), as stateless protocol 369

get_parent_class() function, 51

global variables
creating, macros for, 341
naming, 19-20
Gnu Privacy Guard Web site, 148
good code-writing style, importance
of, 6-7

grammar definitions, EBNF
(Extended Backus-Naur Form),
248-249

GUIs, WinCVS utility, 183

H

handles, Template class
(PHPLib), 234

header comments, 13
file, 14-15
function, 16-17
module, 15-16

header files, extending PHP, 309
heuristic evaluation, discount

usability engineering (Jakob
Nielsen), 164-165
history of PHPLib, 200
hit counter example (self-modifying
code), 86
HTML (Hypertext Markup
Language), 239
compared to XML and SGML,
239-240
templates (data validation), 174-175
HTML developer interface (phpChat
sample application), 111

HTTP (Hypertext Transfer
Protocol), as stateless protocol, 124

370 HTTP Basic Authentication

HTTP Basic Authentication, 157-158

Hypertext Markup Language.
See HTML

Hypertext Transfer Protocol
(HTTP), as stateless protocol, 124

I

identification stage (login
process), 155
identifiers, defined values, 32-33
include files
plug-in include file, 112
security, 177
indexed arrays, 35, 64

adding elements to, 337
Zend API, 336-337

inheritance (OOP), 50

initialization file support, extending
PHP, 351-354

inline comments, 13, 17-18
integers. See longs
interfaces. See also network

interfaces; nodes
importance of consistency, 22

international audiences, application
usability, 161-162

Internet Relay Chat (IRC), phpChat
sample application
client/server structure, 95-97
protocol comparison, 93-94

interpreted languages, 31-32
invalid array accesses, 38

IP addresses, associating with
users, 125
IRC (Internet Relay Chat), phpChat
sample application
client/server structure, 95-97
protocol comparison, 93-94

IRC-level administration (phpChat
sample application), 118

is_alpha() function, 171
is_alphanumeric() function, 171
is_clean_text() function, 171
is_email() function, 171
is_numeric() function, 171

is_subclass_of{() function, 51

J

Java
compared to PHP (Six Open Systems
case study), 283
support, multi-tier applications,
197-198

JavaScript, form data validation, 168

Joganic, John E. (MarketPlayer.com),
285

K
Kedit application, 123
keywords
extends, 50
this, 49

knowledge repository application,
226-227

API compilation, 237-238
authentication, 237
recursive functions (SQL), 236-237
requirements, 227-228
specification writing, 228-231
Template class (PHPLib), 231-236

Koehntopp, Kristian (development of
PHPLIib), 200

L

language attribute (XML), 244

languages (programming)
interpreted, 31-32
procedural, compared to OOP, 41-46
types of, 3-4

libraries
PHPLIib, 200

advantages/disadvantages, 200-201

authentication in knowledge repository
application, 237

authentication, advantages, 213-214

authentication, bitwise operations,
219-224

authentication, operational overview,
215-218

authentication, permissions, 218-219

authentication, sample application, 214

container classes, 209-210

customizing, 201-202

DB_Sql class, 202-206

history, 200

important files, 201

page_open() function, 212

session management, 207-211

Template class, 231-236

url() function, 212-213

tree-handling library, list of
functions, 55

LibXML XML parser, 264
nodes, 265-269
sample XML document, 264-265
xmltree() function, 269-270

linked lists, 53-62
list() array function, 33-34
listings

associative arrays, adding elements

to, 337
calling user functions, 350

listings 371

config.m4 default file, 302

constructing XML documents with
LibXML routines, 268-269

creating PHP extensions, 303-304

creating variables with difterent
scopes, 331-332

DB_Sql sample application, 204-205

directory browsing with security
risks, 142

event-based ping-handling
pseudocode, 100

extending Auth class, 215-217

firstmod.so test file, 307

fsockopen() function, 320-321

indexed arrays, adding elements to, 337

LibXML functions example, 266-268

Makefile.in default file, 302

MCrypt routines, 152-153

Perm class (PHPLib), 219

PHP built-in sessions, 132

PHP interface to PGP 6.5.1, 148-151

PHP-based authentication, 214

phpinfo(') source code and
output, 348

ping-handling pseudocode, 100

plug-in include file, 112

plug-in template, 114-116

Session class (PHPLib), 208

storage modules (PHP session
management), 136-138

Template class, 231

testing for referenced parameter
passing, 327

traditional programming sample
application, 206

WDDX packet, 273-274

XMLStats (statistical information
collecting), 254-257

zend_function_entry array
declaration, 310

zend_module_entry declaration, 312

zval type definition, 324

372

lists

lists
Expat XML parser, 253-259
linked lists, 53-62

local variables, naming, 19
local.inc file (PHPLib), 201-202

lockfiles, disadvantages (phpChat
sample application), 107

log messages (CVS), 180
logical analysis of text, 9

logical groups of functions,
importance of, 23

login process, authentication,
155-157

longs (variables), creating, 332-333

M

M4 files (config.m4 file)
automatic build system, extending
PHP, 301-303
configuration macros, 354-355

macros

accessing zval containers, 355

comments, creating, 13

configuration macros (config.m4 file),
354-355

constants, creating, 341-342

extending PHP, 299

function definitions, 311

global variable creation, 341

returning function values, 344-345

startup and shutdown function
declaration, 315

make process, compiling
modules, 305

Makefile.in file, automatic build
system (extending PHP), 301-303

manually compiling modules,
extending PHP, 306

MarketPlayer.com case study,
285, 289

applications available, 286
code management, 289
company background, 285-286
PHP

limitations of, 287

reasons for selecting, 286-287
server platform integration, 289
session management, 288
top-down programming, 288

markup (XML). See documents, XML

member functions (OOP)
accessing, 48-49
inheritance, 50
list of special functions, 51

memory
garbage collection, warning about, 64
management, extending PHP, 299-300
swap memory, 104

merging CVS files, 180

meta data, RDF (Resource
Description Framework)
specification, 243

method_exists() function, 51
module header comments, 15-16

modules

calling user functions, 349-351

compiling (extending PHP), 304-305
with make, 305
manually, 306
troubleshooting, 308

CVS, checking out, 179

extending PHP
exported function declarations, 309-310
exported function implementation, 316
initialization file support, 351-354
get_module() function

implementation, 316

header files, 309

structure, 308
Zend function block declaration,
310-312
Zend module block declaration,
312-315
importance of, 23
printing information (phpinfo()
function), 347-348
startup and shutdown functions, 349

Mod_Perl, compared to PHP
BizChek.com case study, 279
Six Open Systems case study, 283

mod_rewrite (Apache modaule),
128-129

multi-tier applications, 191
advantages of, 192-193
client/server architecture, 192
COM, 194-197
Java, 197-198

multidimensional arrays, 64-65
multilingual code, avoiding, 21

multiple files in projects, importance
of, 24

Musone, Mark (BizChek.com),
278, 280

N

name servers. See DNS

names
functions, 19-21
variable function names, 77-78
variable variable names, 75-76
variables, 7-8, 19-21

namespaces (XML), 247-249

nesting categories (knowledge
repository application), 236-237

Notation node, DOM (Document Object Model) 373

network interfaces (phpChat sample
application), 99-102
downstream communication, 103-104
interface structure, 102-103
upstream communication, 104-109

network-level security (phpChat
sample application), 117

new_xmldoc() function
(LibXML), 264

next() array function, 40

Nielsen, Jakob, 161
discount usability engineering, 163
heuristic evaluation, 164-165
scenarios, 163
thinking aloud, 164

Node interface, DOM (Document
Object Model), 262

nodes

DOM (Document Object Model)
Attr node, 261
CDATASection node, 262
CharacterData interface, 262
Comment node, 262
Document node, 260
DocumentFragment node, 261
DocumentType node, 261
Element node, 261
Entity node, 261
EntityReference node, 261
Node interface, 262
Notation node, 262
ProcessingInstruction node, 261
Text node, 262

LibXML XML parser, 265-269

Normal Form. See PHP Normal Form

Notation node, DOM (Document
Object Model), 262

374 object-oriented programming

O ParameterPassedByReference()
function, 327

object-oriented programming. parameters. See also arguments
See OOP for functions, 27
objects accessing by reference, 66-74
creating (extending PHP), 338-339 optional parameters, 74-75

overloading, 197 Zend, for PHP functions, 309-310

OFB (Output Feedback) mode, 154 parsers (XML)
OOP (object-oriented DOM (Document Object Model),

programming), 41 259-260

accessing objects, 48-49 Attr node, 261

class implementation, 47-48 CDATASection node, 262

compared to procedural programming, CharacterData interface, 262

41-46 Comment node, 262

Document node, 260
DocumentFragment node, 261
DocumentType node, 261
Element node, 261
Entity node, 261
EntityReference node, 261
Node intetface, 262

constructors, 49-50

inheritance, 50

list of special functions, 51

PHP 3.0 compared to PHP 4.0, 46-47
shopping cart sample code, 51-52

open() function, 136

operators
overloading, 343
precedence (bitwise operations), 221

optional parameters, 74-75

Notation node, 262
ProcessingInstruction node, 261
sample XML document, 262-263
Text node, 262

Expat, 251
event-based API, 251-253
stacks/depths/lists, 253-259

order of variables (security
considerations), 145-146

Output Feedback (OFB) mode, 154

LibXML, 264
overloading nodes, 265-269
objects, 197 sample XML document, 264-265
operators, 343 xmltree() function, 269-270
validating compared to
P non-validating, 250

password files, security, 177

packets (WDDX), functions, 273-276 paths (relative), importance of, 24

page caching
PHP session management, 139
PHPLIb session management, 207

page_open() function, PHPLib, 212

pear directory, 298

Perl, compared to PHP
BizChek.com case study, 279
Six Open Systems case study, 283

Perm class (PHPLIib), 219

permissions, PHP-based
authentication, 218-219

personalized content, application
usability, 161-162

PGP (Pretty Good Privacy), 148-152

PHP

advantages
BizChek.com case study, 278-280
MarketPlayer.com case study, 286-287
Six Open Systems case study,

282-285

authentication, 158

automatic URL rewriting, 129-130

classes, PHP 3 compared to PHP 4,

46-47

extending, 294-295
accepting arguments, 317
accessing arguments, 321-326
accessing zval containers, 355
automatic build system, 301-303
built-in modules, 296
calling user functions, 349-351
compiling modules, 304-306
complex types, 301
configuration macros, 354-355
copy constructors, 342-343
creating constants, 341-342
creating extensions, 303-304
creating objects, 338-339
creating variables, 329-338
directory and file functions, 300
exported function declarations, 309-310
exported function implementation, 316
external modules, 295-296
get_module() function

implementation, 316

global variable creation, 341
header files, 309
initialization file support, 351-354
macros, 299
memory management, 299-300

PHP Normal Form (data validation) 375

module structure, 308
number of arguments, determining,
317-318
passing arguments by reference,
326-328
printing messages, 345-349
resources (data type), 339-341
retrieving arguments, 318-319
returning function values, 344-345
source tree layout, 297-298
startup and shutdown functions, 349
string handling, 300
troubleshooting compiled modules, 308
using extensions, 306-308
variable number of arguments, accessing,
319-321
write access to arguments, 328-329
in Zend engine, 296
Zend function block declaration,
310-312
Zend module block declaration,
312-315
implementation (Six Open Systems
case study), 284-285
as interpreted language, 31-32
limitations
MarketPlayer.com case study, 287
Six Open Systems case study,
283-284
procedural programming compared to
OOP, 41-46
relationship to Zend engine, 294-295
session management, 132-133
page caching, 139
PHP version 3, 139-140
session life cycle, 133-134
storage modules, 135-138
top-down programming
(MarketPlayer.com case study), 288
updates (BizChek.com case study), 280
usage statistics, 279
WDDX functions available, 274

PHP Normal Form (data

validation), 168-174

376 PHP syntax

PHP syntax. See code
php-4 directory, 298

PHP-level security (phpChat sample
application), 117

php.h file, 298

phpChat sample application
administration and security, 117-118
application developer interface, 110
code developer interface, 111-117
HTML developer interface, 111
implementation, 119
IR C client/server structure, 95-97
network interface, 99-102
downstream communication, 103-104
structure, 102-103
upstream communication, 104-109
protocol comparison, 91-94
server represented as client, 97-98
specifications, 90-91
user interface, 109-110

phpinfo() function, 347-348

phpIRC library (phpChat sample
application), 100

phpIRC script, 78

PHPLIb, 200
advantages/disadvantages, 200-201
authentication

advantages, 213-214
bitwise operations, 219-224
knowledge repository application, 237
operational overview, 215-218
permissions, 218-219
sample application, 214
container classes, 209-210
customizing, 201-202
DB_Sql class, 202
debug mode, 203
error handling, 203-204
portability, 202-203
sample application, 204-206

history, 200
important files, 201
page_open() function, 212
session management, 207
automatic fallback, 207
page caching, 207
sample application, 208-211
serializing objects, 208
Template class (knowledge repository
application), 231-236
url() function, 212-213

physical analysis of text, 9
ping-handling pseudocode, 100

PIs (processing instructions),
XML, 245

planning projects (importance of),
5-6
plug-in include file, 112
plug-in template, 114-116
plug-ins, extending applications,
111-117
polymorphic programs, 78-80
portability, DB_Sql class (database
abstraction), 202-203
precedence of operators, bitwise
operations, 221
prepend.php3 file (PHPLib), 201
Pretty Good Privacy (PGP), 148-152
prev() array function, 40
printing, functions for, 345
execution information, 348-349
phpinfo(), 347-348
zend_error(), 346-347
zend_printf(), 346

procedural programming, compared
to OOP, 41-46

processing instructions (PIs),
XML, 245

ProcessingInstruction node, DOM
(Document Object Model), 261

production servers in directory
structure, 177
programming languages
interpreted, 31-32
procedural, compared to OOP, 41-46
types of, 3-4
programs. See applications
programs. See applications

project management, 175-176
CVS, 178-183
automated notification, 186-190
command reference, 191
CVSweb utility, 184
tags and branches, 184-185
WinCVS utility, 183
directory structure, 176-178
multi-tier applications, 191
advantages of, 192-193
client/server architecture, 192
COM, 194-197
Java, 197-198
projects. See also applications; code
API design example, 26-30
documentation, importance of, 25
multiple files, importance of, 24
planning, importance of, 5-6
software engineering cycles, 178
prologue (XML documents), 246-247
protocols
HTTP, as stateless protocol, 124
phpChat sample application, 91-94

pself_url() function, PHPLib, 213
public-key encryption, 147-148
purl() function, PHPLib, 213

run variables 377

Q-R

qualified staff, importance for
security, 154-155

rand() function, creating random
session IDs, 125-126

RDF (Resource Description
Framework) specification, 243

read() function, 136

reading code, formatting for ease of,
9-13

recursive functions (SQL),
knowledge repository application,
236-237

reference
accessing function parameters by,
66-74
passing arguments by (extending
PHP), 326-328
relative paths, importance of, 24
Request For Comments (RFC),
IRC, 95
requirements, knowledge repository
application, 227-228
reset() array function, 39
Resource Description Framework
(RDF) specification, 243
resources (data type), extending
PHP, 339-341
returning function values, extending
PHP, 344-345
RFC (Request For Comments),
IRC, 95
RLE (Run Length Encoding)
algorithm, 67-74
root() function (LibXML), 265
RSA public-key encryption, 147
Run Length Encoding (RLE)
algorithm, 67-74

run variables, 67

378

sapi directory

S

sapi directory, 298

scenarios, discount usability
engineering (Jakob Nielsen), 163

Schorvitz, Eric B.
(MarketPlayer.com), 285

scripts, 123
CVS automated notification, 186-188
phpIRC, 78

secret-key encryption, 147

security
authentication, 155
advantages of PHPLib, 213-214
bitwise operations, 219-224
HTTP Basic Authentication, 157-158
login process, 155-157
operational overview, 215-218
permissions, 218-219
PHP authentication, 158
PHPLIb sample application, 214
data validation, importance of,
141-146
encryption, 146-147
MCrypt function library, 152-154
PGP (Pretty Good Privacy), 148-152
public-key encryption, 147-148
symmetric encryption, 147
eval() function, warning about, 84
flaws in, 140-141
include files, 177
password files, 177
phpChat sample application, 117-118
qualified staff, importance of, 154-155
self-explanatory applications
(application usability), 162
self~-modifying code, 78-80
dynamic function generator example,
80-85
hit counter example, 86

self_url() function, PHPLIib, 213

semaphores, disadvantages (phpChat
sample application), 107-108

serialize() function, 133, 135

serializing data, 135
PHPLIiDb session management, 208
WDDX, 272

server platform integration
(MarketPlayer.com case study), 289

servers (phpChat sample application)
client/server structure (IRC), 95-97
server represented as client, 97-98

Session class (PHPLib),
listing 6.3, 208

session IDs, 125-126
appending to URLs, 212-213
passing, 131
with cookies, 126
with DNS, 130
by dynamic paths, 127-130
by URL rewriting, 126-127
session management
MarketPlayer.com case study, 288
PHPLIb, 207
automatic fallback, 207
page caching, 207
sample application, 208-211
serializing objects, 208
sessions, 124-126
data storage on client, disadvantages
of, 124
PHP session management, 132-133
page caching, 139
PHP version 3, 139-140
session life cycle, 133-134
storage modules, 135-138
session [Ds, 125-126
appending to URLs, 212-213
cookies, passing with, 126
DNS, passing with, 130

dynamic paths, passing by, 127-130
passing, 131
URL rewriting, passing by, 126-127

session_destroy() function, 134, 136
session_register() function, 133-134

session_set_save_handler() function,
135-136

session_start() function, 133
session_unregister() function, 134
setProperty() function, 198

SGML (Standard Generalized
Markup Language), 239
compared to XML and HTML,
239-240

shared memory flags (phpChat
sample application), 108-109

shifting bits (PHP-based
authentication), 221

shopping cart sample code (OOP),
51-52

shutdown functions
declaration, macros, 315
extending PHP, 349

Simple Mail Transfer Protocol
(SMTP), email address
verification, 172

simplified thinking aloud, discount
usability engineering (Jakob
Nielsen), 164

Six Open Systems case study, 281
company background, 281
PHP
advantages of, 285
implementation of, 284-285
potential limitations, 283-284
reasons for selecting, 282-283
SixCMS application, 281-282
SixCMS Web site, 282

string validation functions 379

SixCMS application (Six Open
Systems case study), 281-282

SMTP (Simple Mail Transfer
Protocol), email address
verification, 172

.so (shared object) files, using PHP
extensions, 306-308

software engineering cycles, 178
source code. See code

source tree layout, extending PHP,
297-298

special characters (XML), 245
special values, 33

specification writing (knowledge
repository application), 228-231

SQL, recursive functions (knowledge
repository application), 236-237

stacks (Expat XML parser), 253-259

staging servers in directory
structure, 177

stand-alone documents (XML), 247

Standard Generalized Markup
Language. See SGML

startup functions
declaration, macros, 315
extending PHP, 349

stateless protocol, HTTP as, 124
status codes (CVS), 182

storage modules (PHP session
management), 135-138

streaming HTML (phpChat sample
application), 103-104

streams, 188-189
string handling, extending PHP, 300

string validation functions, 171

strings (variables), creating

strings (variables), creating, 333-334
structure of XML documents, 247

structured data, exchanging, 271
WDDX possible uses, 271-272

structured information markup
(XML), 238-239

structures, passing parameters to
functions, 27

suitability to task (application
usability), 159-160

swap memory, 104
symmetric encryption, 147
syntax. See code

system commands, executing
(security considerations), 142-143

T

tags
CVS, 184-185
XML, 243-244

attributes, 244
talk command (phpChat sample
application), 92
task suitability (application
usability), 159-160

team collaboration. See project
management

Template class (PHPLib), knowledge
repository application, 231-236
templates
HTML developer interface (phpChat
sample application), 111
HTML templates, data validation,
174-175
plug-in template (listing 3.4), 114-116
testing, security aspects, 154-155
testing bits (PHP-based
authentication), 221

text, physical/logical analysis of, 9

Text node, DOM (Document Object
Model), 262

thinking aloud, discount usability
engineering (Jakob Nielsen), 164

this keyword, 49

three-tier applications. See multi-tier
applications

timestamps, 28

toggling bits (PHP-based
authentication), 220

top-down programming
(MarketPlayer.com case study), 288

traditional programming sample
application, 206

tree-handling library, list of
functions, 55

trees, 53-62

troubleshooting compiled modules
(extending PHP), 308

trust boundaries, 143-145
TSRM directory, 298

type conversion (arguments),
extending PHP, 321-326

U

uniqid() function, creating random
session IDs, 125-126

unset() function, 44

upstream communication (phpChat
sample application), 104-106
lockfiles, disadvantages, 107
semaphores, disadvantages, 107-108
setting database flags, disadvantages,
106-107
shared memory flags, 108-109

URL rewriting
automatic (PHP 4.0), 129-130
passing session IDs, 126-127

url() function, PHPLib, 212-213

usability of applications, 158-159
consistency with other Web sites, 161
discount usability engineering (Jakob

Nielsen), 163

heuristic evaluation, 164-165

scenarios, 163

thinking aloud, 164
personalized content, 161-162
self-explanatory applications, 162
suitability to task, 159-160
user control, 160

user control (application
usability), 160

user-defined variables, security
considerations, 143-146

user functions, calling, 349-351

user interface (phpChat sample
application), 109-110

users, associating data with, 125-126

\Y

valid XML documents, compared to
well-formed documents, 250
validating
email addresses, 172-173
form data
HTML templates, 174-175
importance of, 141-146
PHP Normal Form, 168-174
values of functions, returning
(extending PHP), 344-345

variable argument lists, 74-75
variable function names, 77-78

variable number of arguments,
accessing (extending PHP), 319-321

variable parameters in functions,
accessing, 66-74

wddx_serialize_vars() function 381

variable type constants (Zend
engine), 325

variable variable names, 75-76

variables
in applications, security considerations,
143-146
arrays, 63-64
extending PHD, 335-338
Booleans, extending PHP, 334
copy constructors, extending PHP,
342-343
creating, extending PHP, 329-332
doubles, extending PHP, 333
global variables, creating, 341
longs, extending PHP, 332-333
naming, 7-8, 19-21
run variables, 67
strings, extending PHP, 333-334
variable names, 75-76

version control systems. See CVS
(Concurrent Versions System)

virtual memory, 104

viruses, polymorphic programs,
79-80

W

WDDX (Web Distributed Data
eXchange), 271
datatypes, 272-274
functions, 274-276
available to PHP, 274
serializing data, 272
structured data exchange, 271
possible uses, 271-272
wddx_add_vars() function, 275
wddx_packet_end() function, 275
wddx_packet_start() function, 275
wddx_serialize_value() function, 274

wddx_serialize_vars() function, 275

382 Web application design

Web application design
customers’ role in, 91
phpChat sample application
administration and security, 117-118
application developer interface, 110
code developer interface, 111-117
HTML developer interface, 111
implementation, 119
IRC client/server structure, 95-97
network interface, 99-109
protocol comparison, 91-94
server represented as client, 97-98
specifications, 90-91
user interface, 109-110
Web applications, 123. See also
code; projects
extending (phpChat sample
application), 111-117
Kedit, 123
knowledge repository, 226-227
API compilation, 237-238
authentication, 237
recursive functions (SQL), 236-237
requirements, 227-228
specification writing, 228-231
Template class (PHPLIib), 231-236
multi-tier, 191
advantages of, 192-193
client/server architecture, 192
COM, 194-197
Java, 197-198
security
authentication, 155-158
data validation, importance of, 141-
146
encryption, 146-154
flaws in, 140-141
qualified staff; importance of, 154-155
sessions, 124-126
cookies, passing session IDs, 126
data storage on client, disadvantages, 124

DN, passing session IDs, 130

dynamic paths, passing session IDs,
127-130

passing session IDs, 131

PHP session management, 132-140

session 1Ds, 125-126

URL rewriting, passing session IDs,
126-127

usability, 158-159

consistency with other Web sites, 161

discount usability engineering (Jakob
Nielsen), 163-165

personalized content, 161-162

self-explanatory applications, 162

suitability to task, 159-160

user control, 160

Web Distributed Data eXchange.
See WDDX

Web server-level security (phpChat
sample application), 117

Web sites
100hot, 278
BizChek.com, 277
Gnu Privacy Guard, 148
MarketPlayer.com, 286
PHPLib, 200
Six Open Systems, 281-282
SixCMS, 282

Web-based email (BizChek.com case
study), 278

well-formed XML documents,
compared to valid documents, 250

whitespace attribute (XML), 244

Wild, Karl-Heinz (session
management), 200

WinCVS utility, 183

WML (Wireless Markup Language),
242-243

write access to parameters,
extending PHP, 328-329

write() function, 136

writing documentation, importance
of, 25

X

XML (Extensible Markup
Language), 238
advantages of, 240-241
compared to SGML and HTML,
239-240

defined, 238

DocBook DTD, 241-242

documents, 243
attributes, 244
CDATA sections, 246
comments, 245
elements (tags), 243-244
entities, 245
namespaces, 247-249
PIs (processing instructions), 245
prologue, 246-247
structure, 247
valid compared to well-formed, 250

DOM (Document Object Model),

259-260

Attr node, 261
CDATASection node, 262
CharacterData interface, 262
Comment node, 262
Document node, 260
DocumentFragment node, 261
DocumentType node, 261
Element node, 261
Entity node, 261
EntityReference node, 261
Node interface, 262
Notation node, 262
ProcessingInstruction node, 261
sample XML document, 262-263
Text node, 262

Zend engine 383

Expat parser, 251
event-based API, 251-253
stacks/depths /lists, 253-259
LibXML parser, 264
nodes, 265-269
sample XML document, 264-265
xmltree() function, 269-270
RDF (Resource Description
Framework) specification, 243
structured information markup,
238-239
uses for, 241
WDDX data serialization, 272
WML (Wireless Markup Language)
DTD, 242-243

xmldoc() function (LibXML), 264

xmldocfile() function
(LibXML), 264

xmltree() function (LibXML),
269-270

Y-Z

Zend API, 309

associative arrays, 335-336

creating objects, 338-339

indexed arrays, 336-337

parameters for PHP functions,
309-310

zval containers, macros for
accessing, 355

Zend directory, 298

Zend engine. See also extending PHP
extending PHP in, 296
complex types, 301
directory and file functions, 300
macros, 299
memory management, 299-300
string handling, 300
relationship to PHP, 294-295
resources (data type), 339-341

384 Zend engine

variable type constants, 325
zval separation, 327

zval structure, 324
zvalue_value structure, 325

Zend function block, declaring
(extending PHP), 310-312

Zend module block, declaring
(extending PHP), 312-315

zend.h file, 298
zend_APIL.h file, 298
zend_error() function, 346-347

zend_function_entry array
declaration, 310

zend_module_entry declaration, 312
zend_printf() function, 346

zval containers
accessing, macros, 355
assigning contents to other zval
containers, 342-343

zval separation (Zend engine), 327
zval structure, 324
zval type definition (listing 9.8), 324

zvalue_value structure, 325

Open Source Resource

Selected Open Source Titles from New Riders Publishing

In MySQL, Paul DuBois provides you with a comprehensive guide to one
of the most popular relational database systems, MySQL. As an important
contributor to the online documentation for MySQL, Paul uses his day-
to-day experience answering questions users post on the MySQL mailing
list

to pinpoint the problems most users and administrators encounter.
Through two sample databases that run throughout the book, he gives you
solutions to problems you'll likely face, including integratin MySQL effi- m
ciently with third-party tools like PHP and Perl, enabling you to generate

dynamic Web pages through database queries.

Paul DuBois

ISBN: 0-7357-0921-1

The goal of the Python Essential Reference is to concisely describe the
Python programming language and its large library of standard modules,
collectively known as the Python programming "environment." This book
is for the professional who has experience with other systems programming
language such as C or C++, and is looking for content that is not embell-
ished with basic introductory material on the Python programming envi-
ronment.

How\
Riders |

ISBN: 0-7357-09017

Linux Firewalls

This book details the security steps that a small, non-enterprise busi-
ness user might take to protect his system. These steps include packet-
level firewall filtering, IP masquerading, proxies, tcp wrappers, system
integrity checking, and system security monitoring with an overall
emphasis on filtering and protection. The goal of the book is to help
people get their Internet security measures in place quickly, without
the need to become experts in security of firewalls.

N
Riders Robert L. Ziegler

ISBN: 0-7357-0900-9

Advanced Information on
Networking Technologies

New Riders Books Offer Advice and Experience

; LANDMARK

Rethinking Computer Books

We know how important it is to have access to detailed,

Developmg solution-oriented information on core technologies. Landmark
Llnu?‘) books contain the essential information you need to solve tech-
Applications nical problems. Written by experts and subjected to rigorous

with GTK+ and GDK

peer and technical reviews, our Landmark books are hard-core

resources for practitioners like you.

m Eric Harlow

. ESSENTIAL REFERENCE
Linux
REFERENCE Smart, Like You

The Essential Reference series from
New Riders provides answers when
you know what you want to do but
need to know how to do it. Each
title skips extraneous material and
assumes a strong base of knowledge.

These are indispensable books for
the practitioner who wants to find specific features of a
technology quickly and efficiently. Avoiding fluff and
basic material, these books present solutions in an inno-
vative, clean format—and at a great value.

CIRCLE SERIES

APLICATION DIVELOPHEN]
F’h
yiuah. The Circle Series is a set of
reference guides that meet
the needs of the growing
community of advanced,
technical-level networkers
who must architect,
develope, and administer
operating systems like UNIX, Linux,
Windows NT, and Windows 2000.
These books provide network designers
and programmers with detailed, proven
solutions to their problems.

M
“
=

hiders| Books for Networking Professionals

Open Source Titles

MySQL

By Paul DuBois
1st Edition

$49.99

ISBN: 0-7357-0921-1

)

MySQL teaches readers how to use the
tools provided by the MySQL
distribution, covering installation, setup,
daily use, security, optimization, mainte-
nance, and troubleshooting. It also dis-
cusses important third-party tools, such as
the Perl DBI and Apache/PHP interfaces
that provide access to MySQL.

Python Essential
Reference

By David Beazley
1st Edition

| $34.95

ISBN: 0-7357-0901-7

Python

Avoiding the dry and academic approach,
the goal of Python Essential Reference is
to concisely describe the Python pro-
gramming language and its large library
of standard modules, collectively known
as the Python programming environ-
ment. This is an informal reference that
covers Python’s lexical conventions,
datatypes, control flow, functions, state-
ments, classes and execution model. A
truly essential reference for any Python
programmer.

Linux Firewalls
By Robert Ziegler
$39.99

Linux' Firewalls

ISBN: 0-7357-0900-9

=

A Linux machine connected to the
Internet is in a high-risk situation. This
book details security steps that a small,
non-enterprise business user might take
to protect himself. These steps include
packet-level firewall filtering, IP mas-
querading, proxies, tcp wrappers, system
integrity checking, and system security
monitoring with an overall emphasis on
filtering and protection. The goal is to
help people get their Internet security
measures in place quickly, without the
need to become experts in security or
firewalls.

KDE Application
Development

By Uwe Thiem
$39.99 US / $59.95 CAN

KDE
APPLICATION DEVELOPMENT

ISBN: 1-57870-201-1

KDE Application Development ofters a
head start on KDE and Qt. The book
covers the essential widgets available in
KDE and Qt, and offers a strong start
without the "first try" annoyances which
sometimes make strong developers and
programmers give up.

DCE/RPC OVER SMB DCE/RPC over SMB

SAMBA 2r0 WINDOWS NI*
DOMAIN INTERNALS

g Samba and Windows NT

Domain Internals
By Luke Leighton
$45.00

ISBN: 1-57870-150-3

—— n
]
T —

Security people, system and network
administrators, and the folks writing tools
for them all need to be familiar with the
packets flowing across their networks.
Authored by a key member of the
SAMBA team, this book describes how
Microsoft has taken DCE/RPC and
implemented it over SMB and TCP/IP.

Grokking the GIMP
By Carey Bunks

Windows NT
Power Toolkit $39.99

ISBN: 0-7357-0924-6

Grokking the GIMP is a technical refer-
ence that covers the intricacies of the
GIMP’s functionality. The material gives
the reader the ability to get up to speed
quickly and start creating great graphics
using the GIMP. Included as a bonus are
step-by-step cookbook features used
entirely for advanced effects.

GIMP Essential Reference
By Alex Harford
$24.95

ISBN: 0-7357-0911-4

As the use of the Linux OS
gains steam, so does the use of the
GIMP. Many Photoshop users are start-
ing to use the GIMP, recognized for its
power and versatility. Taking this into
consideration, GIMP Essential Reference
has shortcuts exclusively for Photoshop
users and puts the power of this program
into the palm of the reader’s hand.

UNIX/Linux Titles

Solaris

Essential Reference
By John P. Mulligan

1st Edition

300 pages, $24.95

ISBN: 0-7357-0023-0

Solaris’

ESSENTIAL

REFERENCE

Looking for the fastest and easiest way to
find the Solaris command you need? Need
a few pointers on shell scripting? How
about advanced administration tips and
sound, practical expertise on security
issues? Are you looking for trustworthy
information about available third-party
software packages that will enhance your
operating system? Author John Mulligan—
creator of the popular “Unofficial Guide to
The Solaris™ Operating Environment”
Web site (sun.icsnet.com)—delivers all
that and more in one attractive, easy-to-use
reference book. With clear and concise
instructions on how to perform important
administration and management tasks, and
key information on powerful commands
and advanced topics, Solaris Essential
Reference is the book you need when you
know what you want to do and only need
to know how.

Linux System
Administration
By M. Carling,
Stephen Degler,
and James Dennis
1st Edition

450 pages, $29.99
ISBN: 1-56205-934-3

Linux System
Administration

As an administrator, you probably feel

that most of your time and energy is spent
in endless firefighting. If your network

has become a fragile quilt of temporary
patches and work-arounds, this book is

for you. Have you had trouble sending or
receiving email lately? Are you looking for

a way to keep your network running
smoothly with enhanced performance?
Are your users always hankering for more
storage, services, and speed? Linux System
Administration advises you on the many
intricacies of maintaining a secure, stable
system. In this definitive work, the authors
address all the issues related to system
administration, from adding users and
managing file permissions, to Internet
services and Web hosting, to recovery
planning and security. This book fulfills
the need for expert advice that will ensure
a trouble-free Linux environment.

GTK+/Gnome
Application
Development

By Havoc Pennington
1st Edition

492 pages, $39.99

ISBN: 0-7357-0078-8

GTK+/Gnome
Application

Development

This title is for the reader who 1s conver-
sant with the C programming language
and UNIX/Linux development. It
provides detailed and solution-oriented
information designed to meet the needs
of programmers and application developers
using the GTK+/Gnome libraries.
Coverage complements existing GTK+/
Gnome documentation, going into more
depth on pivotal issues such as uncovering
the GTK+ object system, working with
the event loop, managing the Gdk sub-
strate, writing custom widgets, and
mastering GnomeCanvas.

Developing Linux
Applications with

Developing GTK+ and GDK
Linux By Eric Harlow
Applications 1st Edition

with GTK+ and GDK

490 pages, $34.99
ISBN: 0-7357-0021-4

We all know that Linux is one of the most
powerful and solid operating systems in
existence. And as the success of Linux
grows, there is an increasing interest in
developing applications with graphical user
interfaces that take advantage of the power
of Linux. In this book, software developer
Eric Harlow gives you an indispensable
development handbook focusing on the
GTK+ toolkit. More than an overview of
the elements of application or GUI design,
this is a hands-on book that delves into
the technology. With in-depth material on
the various GUI programming tools and
loads of examples, this book’s unique focus
will give you the information you need to
design and launch

professional-quality applications.

Linux

Essential Reference
By Ed Petron

1st Edition

350 pages, $24.95

ISBN: 0-7357-0852-5

This book is all about getting things done
as quickly and efficiently as possible by
providing a structured organization for the
plethora of available Linux information. We
can sum it up in one word—value. This
book has it all: concise instructions on how
to perform key administration tasks,
advanced information on configuration,
shell scripting, hardware management,

systems management, data tasks, automa-
tion, and tons of other useful information.
This book truly provides groundbreaking
information for the growing community
of advanced Linux professionals.

Lotus Notes and
Domino Titles

Domino System
Administration

By Rob Kirkland, CLP, CLI
1st Edition

850 pages, $49.99

ISBN: 1-56205-948-3

Domino System
Administration

Your boss has just announced that you
will be upgrading to the newest version
of Notes and Domino when it ships. How
are you supposed to get this new system
installed, configured, and rolled out to all
of your end users? You understand how
Lotus Notes works—you’ve been admin-
istering it for years. What you need is a
concise, practical explanation of the new
features and how to make some of the
advanced stuff work smoothly by some-
one like you, who has worked with the
product for years and understands what
you need to know. Domino System
Administration is the answer—the first
book on Domino that attacks the tech-
nology at the professional level with
practical, hands-on assistance to get
Domino running in your organization.

Lotus Notes & Domino
Essential Reference

By Tim Bankes, CLP

and Dave Hatter, CLP, MCP
1st Edition

650 pages, $45.00

ISBN: 0-7357-0007-9

Lotus Notes' &
Domino

ESSENTIAL
REFERENCE

You're in a bind because you’ve been
asked to design and program a new data-
base in Notes for an important client who
will keep track of and itemize a myriad of
inventory and shipping data. The client
wants a user-friendly interface that won't
sacrifice speed or functionality. You are
experienced (and could develop this appli-
cation in your sleep), but feel you need
something to facilitate your creative and
technical abilities—something to

perfect your programming skills. The
answer is waiting for you: Lotus Notes &
Domino Essential Reference. It’s compact
and simply designed. It’s loaded with
information. All of the objects, classes,
functions, and methods are listed. It
shows you the object hierarchy and

the relationship between each one. It’s
perfect for you. Problem solved.

a1 TR S]

Networking Titles

Network Intrusion
~ Detection: An Analyst’s
xework | Handbook
Intrusion Detection | g Gtephen Northcutt
1st Edition
267 pages, $39.99
ISBN: 0-7357-0868-1

An Analyst’s Handbook

Get answers and solutions from someone
who has been in the trenches. The author,
Stephen Northcutt, original developer of
the Shadow intrusion detection system
and former director of the United States
Navy’s Information System Security
Office at the Naval Security Warfare
Center, gives his expertise to intrusion
detection specialists, security analysts, and
consultants responsible for setting up

and maintaining an effective defense
against network security attacks.

Understanding Data
Communications, Sixth

Undcrstar'ldir}g Data Edition
Communications | B Gilbert Held
6th Edition

600 pages, $39.99
ISBN: 0-7357-0036-2

Updated from the highly successful fifth
edition, this book explains how data com-
munications systems and their various
hardware and software components work.
More than an entry-level book, it
approaches the material in textbook
format, addressing the complex issues
involved in internetworking today. A great
reference book for the experienced net-
working professional that is written by the
noted networking authority, Gilbert Held.

Other Books By New Riders

Microsoft Technologies

APPLICATION
PROGRAMMING

Delphi COM Programming

1-57870-221-6 « $45.00 US/$67.95 CAN
Windows NT Applications: Measuring and
Optimizing Performance

1-57870-176-7 « $40.00 US/$59.95 CAN
Applying COM+

ISBN 0-7357-0978-5 « $49.99 US/$74.95
CAN

Available August 2000

WEB PROGRAMMING

Exchange & Outlook: Constructing
Collaborative Solutions

ISBN [-57870-252-6 + $40.00 US/$59.95
CAN

SCRIPTING

Windows Script Host

[-57870-139-2 « $35.00 US/$52.95 CAN
Windows NT Shell Scripting

1-57870-047-7 + $32.00 US/$45.95 CAN
Windows NT Win32 Per] Programming:

The Standard Extensions

1-57870-067-1 + $40.00 US/$59.95 CAN
Windows NT/2000 ADSI Scripting for System
Administration

[-57870-219-4 + $45.00 US/$67.95 CAN
Windows NT Automated Deployment and
Customization

[-57870-045-0 « $32.00 US/$45.95 CAN
Open Source

MySQL

0-7357-0921-1 » $49.99 US/$74.95 CAN
Web Application Development with PHP
0-7357-0997-1 « $45.00 US/$67.95 CAN
Available June 2000

PHP Functions Essential Reference
0-7357-0970-X « $35.00 US/$52.95 CAN
Available August 2000

Python Essential Reference

0-7357-0901-7 « $34.95 US/$52.95 CAN
Autoconf, Automake, and Libtool
[-57870-190-2 + $35.00 US/$52.95 CAN
Available August 2000

Linux/Unix
ADMINISTRATION

Linux System Administration

1-56205-934-3 + $29.99 US/$44.95 CAN
Linux Firewalls

0-7357-0900-9 + $39.99 US/$59.95 CAN
Linux Essential Reference

0-7357-0852-5 « $24.95 US/$37.95 CAN
UnixWare 7 System Administration

1-57870-080-9 + $40.00 US/$59.99 CAN

DEVELOPMENT

Developing Linux Applications with GTK+ and
GDK

0-7357-0021-4 « $34.99 US/$52.95 CAN
GTK+/Gnome Application Development
0-7357-0078-8 « $39.99 US/$59.95 CAN
KDE Application Development
[-57870-201-1 « $39.99 US/$59.95 CAN

GIMP

Grokking the GIMP

0-7357-0924-6 « $39.99 US/$59.95 CAN
GIMP Essential Reference

0-7357-0911-4 « $24.95 US/$37.95 CAN

SOLARIS

Solaris Advanced System Administrator’s Guide,
Second Edition

1-57870-039-6 « $39.99 US/$59.95 CAN
Solaris System Administrator’s Guide, Second
Edition

1-57870-040-X * $34.99 US/$52.95 CAN
Solaris Essential Reference

0-7357-0023-0 * $24.95 US/$37.95 CAN

Networking

STANDARDS &
PROTOCOLS

Cisco Router Configuration & Troubleshooting,
Second Edition

0-7357-0999-8 « $34.99 US/$52.95 CAN
Understanding Directory Services
0-7357-0910-6 * $39.99 US/$59.95 CAN

Understanding the Network: A Practical Guide to
Internetworking

0-7357-0977-7 + $39.99 US/$59.95 CAN
Understanding Data Communications, Sixth
Edition

0-7357-0036-2 + $39.99 US/$59.95 CAN
LDAP: Programming Directory Enabled
Applications

[-57870-000-0 * $44.99 US/$67.95 CAN
Gigabit Ethernet Networking

1-57870-062-0 « $50.00 US/$74.95 CAN
Supporting Service Level Agreements

on IP Networks

[-57870-146-5 « $50.00 US/$74.95 CAN
Directory Enabled Networks

1-57870-140-6 * $50.00 US/$74.95 CAN
Differentiated Services for the Internet
[-57870-132-5 + $50.00 US/$74.95 CAN
Quality of Service on IP Networks
1-57870-189-9 « $50.00 US/$74.95 CAN
Designing Addressing Architectures for
Routing and Switching

1-57870-059-0 « $45.00 US/$69.95 CAN
Understanding & Deploying LDAP Directory
Services

1-57870-070-1 « $50.00 US/$74.95 CAN
Switched, Fast and Gigabit Ethernet, Third

Edition

1-57870-073-6 + $50.00 US/$74.95 CAN
Wireless LANs: Implementing Interoperable
Networks

1-57870-081-7 « $40.00 US/$59.95 CAN
‘Wide Area High Speed Networks
1-57870-114-7 + $50.00 US/$74.95 CAN
The DHCP Handbook

1-57870-137-6 + $55.00 US/$81.95 CAN
Designing Routing and Switching Architectures
for Enterprise Networks

1-57870-060-4 + $55.00 US/$81.95 CAN
Local Area High Speed Networks
1-57870-113-9 « $50.00 US/$74.95 CAN
Available June 2000

Network Performance Baselining
1-57870-240-2 « $50.00 US/$74.95 CAN
Economics of Electronic Commerce

1-57870-014-0 * $49.99 US/$74.95 CAN
SECURITY

Intrusion Detection

1-57870-185-6 « $50.00 US/$74.95 CAN
Understanding Public-Key Infrastructure
1-57870-166-X * $50.00 US/$74.95 CAN
Network Intrusion Detection: An Analysts
Handbook

0-7357-0868-1 « $39.99 US/$59.95 CAN
Linux Firewalls

0-7357-0900-9 + $39.99 US/$59.95 CAN

LOTUS
NOTES/DOMINO

Domino System Administration
[-56205-948-3 + $49.99 US/$74.95 CAN
Lotus Notes & Domino Essential Reference
0-7357-0007-9 » $45.00 US/$67.95 CAN

Software Architecture &
Engineering

Designing for the User with OVID
1-57870-101-5 « $40.00 US/$59.95 CAN
Designing Flexible Object-Oriented Systems
with UML

1-57870-098-1 « $40.00 US/$59.95 CAN
Constructing Superior Software
1-57870-147-3 « $40.00 US/$59.95 CAN
A UML Pattern Language

[-57870-118-X » $45.00 US/$67.95 CAN

Ne
Hitﬁ;rs We Want to Know What You Think

To better serve you, we would like your opinion on the content and quality of this book. Please
complete this card and mail it to us or fax it to 317-581-4663.
Name

Address

City. State Zip

Phone

Email Address

Occupation

Operating Systemy(s) that you use

What influenced your purchase of this book? What do you like most about this book?
U Recommendation U Cover Design Check all that apply.
U Table of Contents O Index 0 Content O Writing Style
QO Magazine Review QO Advertisement O Accuracy 0 Examples
U New Rider’s Reputationd Author Name O Listings U Design
i U Index U Page Count
How would you rate the contents of this book? Q Price O Ilustrations
U Excellent U Very Good
U Good U Fair What do you like least about this book?
U Below Average 4 Poor Check all that apply.
) U Content U Writing Style
How do you plan to use this book? O Accurac 0 Examples
. .. Y P
U Quick reference U Self-training O Listings Q Design
U Classroom U Other O Index Q Page Count
U Price U Mlustrations

What would be a useful follow-up book to this one for you?

Where did you purchase this book?

Can you name a similar book that you like better than this one, or one that is as good? Why?

How many New Riders books do you own?

What are your favorite computer books?

What other titles would you like to see us develop?

Any comments for us?

Web Application Development with PHP 4.0,
0-7357-0997-1

www.newriders.com + Fax 317-581-4663

Fold here and tape to mail

Place
Stamp
Here

New Riders Publishing
201 W. 103rd St.
Indianapolis, IN 46290

New
kides\ How to Contact Us

Visit Our Web Site

www.newriders.com
On our web site you’ll find information about our other books, authors, tables of contents,

indexes, and book errata listings, and more.

Email Us

Contact us at this address:

nrfeedback@newriders.com
* If you have comments or questions about this book
* To report errors that you have found in this book
* Opportunities @ newriders.com
e If you have a book proposal to submit or are interested in writing for New Riders
e If you would like to have an author kit sent to you
e If you are an expert in a computer topic or technology and are interested in being a

technical editor who reviews manuscripts for technical accuracy

international@mcp.com
¢ To find a distributor in your area, please contact our international department at this

address.

nrmedia@newriders.com
¢ For instructors from educational institutions who want to preview New Riders books for classroom
use. Email should include your name, title, school, department, address, phone number, office
days/hours, text in use, and enrollment, along with your request for desk/examination copies and/or
additional information.
* For members of the media who are interested in reviewing copies of New Riders books. Send your
name, mailing address, and email address, along with the name of the publication or Web site you

work for.

Write to Us

New Riders Publishing
201 W. 103rd St.
Indianapolis, IN 46290-1097

Call Us

Toll-free (800) 571-5840 + 9 + 7477
If outside U.S. (317) 581-3500. Ask for New Riders.

Fax Us
(317) 581-4663

Dear Reader:

While the Web development community knows the power and superiority of PHP and promotes its use,
commercial backing and the availability of reference materials will continue to be the two keys to making
PHP become the standard in Web scripting. Zend Technologies was founded to promote PHP via its Web
site and to provide commercial backing for PHP, giving it the “rubber stamp” that companies need to adopt
Open Source software.

Other ways to promote PHP include the Zend API documentation in this book (Chapter 9, “Extending
PHP 4.0: Hacking the Core of PHP”). It will encourage the community and its developers to help extend
PHP to fit their needs.

The May 2000 release of PHP 4.0, which incorporates the Zend engine, is much faster and more powerful
in every respect. Some of the highlights of this version are support of multithreaded Web server environ-
ments, including an ISAPI module (Microsoft’s IIS), a new Web server abstraction layer, Java connectivity,
and a much-improved build process for better PHP configuration.

PHP 4.0 also includes a new, high-performance API for extension module authors. This API allows PHP to
pass parameters to internal functions much more efficiently by avoiding the duplication of values unless
absolutely necessary. The new API usually requires no additional programming by the module authors,
though additional logic is sometimes necessary. Most of the modules included in the PHP distribution were
already converted to use this high-performance API. Chapter 9 describes the new API in depth.

We’d like to take this opportunity to thank everyone who has contributed to making PHP the superior
software that it is. We hope that we can continue to join forces to make it the best it can be.

Andi Gutmans
Zeev Suraski
Zend Technologies, Ltd.

Open Publication License
Draft v1.0, 8 June 1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

The Open Publication works may be reproduced and distributed in whole or in part, in any medium physical or
electronic, provided that the terms of this license are adhered to, and that this license or an incorporation of it by
reference (with any options elected by the author(s) and/or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author’s name or designee>. This material may be distributed only subject to the
terms and conditions set forth in the Open Publication License, vX.Y or later (the latest version is presently avail-
able at http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the author(s) and/or publisher of the
document (see section VI).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher and author.
The publisher and author’s names shall appear on all outer surfaces of the book. On all outer surfaces of the book
the original publisher’s name shall be as large as the title of the work and cited as possessive with respect to
the title.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee.

1. SCOPE OF LICENSE

The following license terms apply to all Open Publication works, unless otherwise explicitly stated in the
document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with other works or
programs on the same media shall not cause this license to apply to those other works. The aggregate work shall
contain a notice specifying the inclusion of the Open Publication material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remaining
portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided “as is” without warranty of any kind,
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a partic-
ular purpose or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations, anthologies, compilations and
partial documents, must meet the following requirements:

1. The modified version must be labeled as such.
2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to normal
academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or imply endorsement of the result-
ing document without the original author’s (or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly recommended of redistributors
that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification
to the authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to
give the authors time to provide updated documents. This notification should describe modifications, if any,
made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or else
described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any
hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by append-
ing language to the reference to or copy of the license. These options are considered part of the license instance
and must be included with the license (or its incorporation by reference) in derived works.

A.To prohibit distribution of substantively modified versions without the explicit permission of the author(s).
“Substantive modification” is defined as a change to the semantic content of the document, and excludes mere
changes in format or typographical corrections.

To accomplish this, add the phrase ‘Distribution of substantively modified versions of this document is prohib-
ited without the explicit permission of the copyright holder. to the license reference or copy.

B.To prohibit any publication of this work or derivative works in whole or in part in standard (paper) book
form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder.

To accomplish this, add the phrase ‘Distribution of the work or derivative of the work in any standard (paper)
book form is prohibited unless prior permission is obtained from the copyright holder. to the license reference
or copy.

CD-ROM Licensing Agreement
By opening this package, you are agreeing to be bound by the following agreement:

= The source code contained on this CD-ROM is under the copyright of the authors and is licensed for
your private use only. Individual programs and other items on the CD-ROM are copyrighted or are under
GNU license, or licensed for this book by their various authors or other copyright holders.

= This software is sold as-is without warranty of any kind, either expressed or implied, including but not lim-
ited to the implied warranties of merchantability and fitness for a particular purpose. Neither the publisher
nor its dealers or distributors assumes any liability for any alleged or actual damages arising from the use of
this program. (Some states do not allow for the exclusion of implied warranties, so the exclusion may not

apply to you.)

For some third-party software read this Important Note:

Important Note: Some of the Software on this CD-ROM has a “time-out” feature so that it expires within
thirty (30) days after you load the Software on your system. The “time-out” feature may install hidden files on
your system which, if not deleted, might remain on your computer after the Software has been removed. The
purpose of the “time-out” feature is to ensure that the software is not used beyond its intended use.

Additional Note: This CD-ROM uses long and mixed-case filenames requiring the use of a protected-mode
CD-ROM driver.

